

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

2019

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 20 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	B✓	(1)
1.3	A✓	(1)
1.4	A✓	(1)
1.5	D✓	(1)
1.6	B✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 **Angle grinder:**

- Do not use excessive force while grinding. ✓
- Ensure that the sparks do not endanger co-workers. ✓
- Keep hands clear from grinding disc. ✓
- Maintain a firm grip on the angle grinder. ✓
- Grinding disc fitted will not turn faster than the manufactures recommendation. \checkmark
- Make sure that there is no cracks or chips on the grinding disc
- Safety guard must be in place. ✓
- PPE must be worn. ✓
- Beware of lockable switches in the on position when the machine is plugged in and switched on. ✓
- Check for defective cables. ✓
- Secure work piece properly. ✓
- Grinding angle to be away from body to prevent sparks directly on clothing. ✓
- Make sure disc does not wobble during cutting. \checkmark

2.2 Welding goggles:

- To protect your eyes from the spatter / sparks. ✓
- To protect your eyes from the harmful rays / UV rays. ✓
- To ensure proper vision of the process. \checkmark
- (Any 2 x 1) (2)

(Any 2 x 1)

(Any 2 x 1)

(2)

(2)

(2)

2.3 **PPE – Bench grinder:**

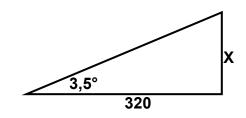
- Overall
 ✓
- Safety goggles / face shield ✓
- Safety shoes ✓
- 2.4 **Process and product workshop layout:**
 - The product layout ensures that the machines are arranged in the sequence of the manufacturing process of a product. ✓
 - The process layout is based on the type of manufacturing process needed in the making of the product. ✓

2.5 **Employer's responsibility – equipment:**

- They must provide and maintain equipment. ✓
- Ensure that the equipment is safe to use by employees. ✓
- Provide safe storage for equipment. ✓
- Provide proper training of employees in the use of the equipment. \checkmark
- Enforce safety measures/ OHS acts and Regulations. ✓
- Employer must provide proper personal protective equipment (PPE) for the specific machines. ✓

(Any 2 x 1) (2) [10]

QUESTION 3: MATERIALS (GENERIC)


3.1	 Bene Filing Mac ✓ 	distinguish between metals: ding test: ✓ hit with hammer. ✓ g test ✓ file material. (colour and ease) ✓ hining test ✓ machine material. (type of shaving, ea nd ✓ drop on floor. (high or low frequency) ✓	ase and colour)	
		rk test. ✓ Shape and colour of sparks. ✓	(Any 4 x 2)	(8)
			(Ally 4 X Z)	(0)
3.2	Heat-tre	atment:		
	3.2.1	 Tempering: After hardening, the steel must be tempered. To relieve the strains induced. ✓√ To reduce brittleness. ✓√ 	(Any 1 x 2)	(2)
	3.2.2	 Normalising: To relieve the internal stresses. ✓✓ 		(2)
	3.2.3	 Hardening: To produce extremely hard steel. ✓✓ To enable it to resist wear and tear. ✓✓ 	(Any 1 x 2)	(2) [14]

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	D✓	(1)
4.2	B✓	(1)
4.3	B✓	(1)
4.4	C✓	(1)
4.5	B✓	(1)
4.6	B✓	(1)
4.7	C✓	(1)
4.8	A✓	(1)
4.9	C✓	(1)
4.10	B✓	(1)
4.11	B✓	(1)
4.12	D✓	(1)
4.13	A✓	(1)
4.14	A✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 **Calculate the tailstock set-over:**

√

(3)

(2)

5.2 **Methods to cut multiple-start threads:**

- By moving the tool with the compound-slide \checkmark
- By turning the change-gears ✓
- By using a driving plate with accurately cut slots ✓
- By using a graduated driving plate \checkmark

(Any 3 x 1) (3)

5.3 Parallel key:

5.3.2

5.3.1 Width:

Width =
$$\frac{D}{4}$$

= $\frac{48}{4}$ \checkmark
= 12 mm \checkmark

Thickness:

Thickness =
$$\frac{D}{6}$$

= $\frac{48}{6}$ \checkmark
= 8 mm \checkmark (2)

5.4 Advantages for using the compound slide method to cut an external V-thread on the centre lathe:

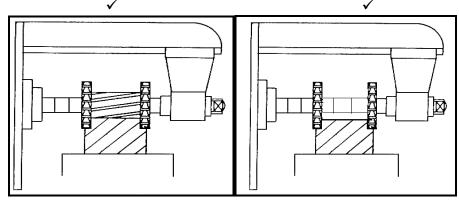
- No unnecessary burden on tool because cutting action takes place on one side of the tool. ✓
- The force on the tool is evenly distributed along the cutting action. \checkmark
- The thread can be cut at a fairly fast speed because only the cutting edge need to be at centre height and a side rake may be ground. ✓
- By lightly restricting the movement of the apron hand wheel, the noncutting edge of the tool can be made to polish the side of the thread. ✓

(Any 2 x 1) (2)

5.5 **Milling processes:**

5.5.1 Advantages of down-cut milling:

- Deeper cuts can be taken, as the force of the cutter is downwards. ✓
- Finer finish is obtained. ✓
- Less vibration. ✓


(Any 1 x 1) (1)

5.5.2 Advantages of up-cut milling:

- The process enables hard steel to be cut, because the total cutting pressure is absorbed by the material at the back of the edge. ✓
- Metal with hard scale, such as castings or forgings, the cut is started under the scale where the material is softer which extends the life of the cutter. ✓
- A coarser feed can be used. ✓
- The strain on the cutter and arbor will be less. ✓

(Any 1 x 1) (1)

5.6 **Gang milling and straddle milling:**

Gang milling ✓

Straddle milling ✓

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Spur gear:**

6.1.1 Number of teeth:

Module =
$$\frac{PCD}{T}$$

Teeth = $\frac{PCD}{m}$ \checkmark
= $\frac{99}{3}$
= 33 teeth \checkmark (2)

6.1.2 **Outside diameter:**

OD = PCD + 2a			= m(T + 2)		
= 99 + 2(3)	\checkmark	or	= 3(33 + 2)	\checkmark	
=105 mm	\checkmark		=105 mm	\checkmark	(2)

,

`

6.1.3 **Cutting depth:**

Cutting depth = 2,157m			= 2,25m		
$= 2,157 \times 3$	\checkmark	or	$= 2,25 \times 3$	\checkmark	
= 6,47 mm	\checkmark		= 6,75 mm	\checkmark	(2)

6.1.4 **Addendum:**

Addendum=m =3mm ✓

6.1.5 **Dedendum:**

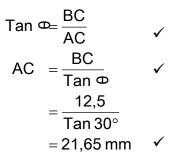
Dedendum=1,157m			=1,25m		
$=$ 1,157 \times 3	\checkmark	or	$=$ 1,25 \times 3	\checkmark	
= 3,47 mm	\checkmark		= 3,75 mm	\checkmark	(2)

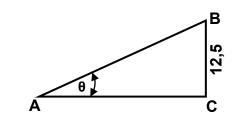
6.1.6 **Circular pitch:**

$$CP = \frac{PCD}{T} \times \models$$

$$= 3 \times \models \checkmark \qquad \text{or} \qquad = \frac{99}{33} \times \models \checkmark$$

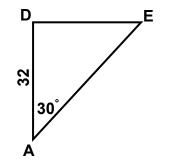
$$= 9,42 \text{ mm} \checkmark \qquad = 9,42 \text{ mm} \checkmark \qquad (2)$$


(1)


6.2 Calculate distances'Y and X':

$$Y = 180 - 2(DE)$$

X = 180 - 2(DE) + 2(AC) + 2(rad)


Calculate AC:

Calculate DE:

Tan Φ=
$$\frac{DE}{AD}$$

DE = Tan Φ× AD
= Tan 30° × 32
= 18,48 mm \checkmark

Calculate 'Y':

$$Y = 180 - 2(DE)$$

= 180 - 2(18,48)
= 143,04 mm

Calculate 'X':

$$X = 180 - 2(DE) + 2(AC) + 2(rad) \qquad \checkmark$$

= 143,04 + 2(21,65) + 2(12,5) $\qquad \checkmark$
= 143,04 + 43,3 + 25
= 211,34 mm $\qquad \checkmark$

(Any other correct method is also acceptable.)

(11)

achining 10 SC/NSC – Marking Guidelines

6.3 **Differential indexing :**

6.3.1 **Indexing required:**

Indexing =
$$\frac{40}{n}$$

= $\frac{40}{120} \div \frac{5}{5}$ (approximate)
= $\frac{8}{24}$ \checkmark
Approximate indexing: 8 holes on a 24 hole circle \checkmark
or
10 holes on a 30 hole circle \checkmark
or
13 holes on a 39 hole circle \checkmark
or
14 holes on a 42 hole circle \checkmark
or
18 holes on a 54 hole circle \checkmark
or
22 holes on a 66 hole circle \checkmark

6.3.2 Change gears required:

$$\frac{Dr}{Dn} = \frac{A - N}{A} \times \frac{40}{1}$$

$$= \frac{120 - 119}{120} \times \frac{40}{1} \qquad \checkmark$$

$$= \frac{1}{120} \times \frac{40}{1}$$

$$= \frac{40}{120}$$

$$= \frac{4}{12} \times \frac{6}{6}$$

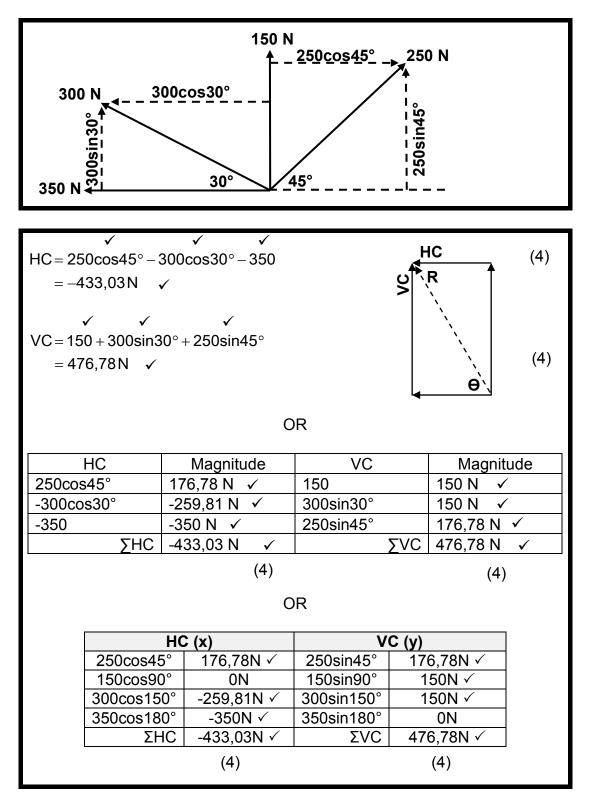
$$\frac{Dr}{Dn} = \frac{24}{72} \qquad \checkmark$$

(3)

(2)

6.3.3 **Direction of rotation of index plate:**

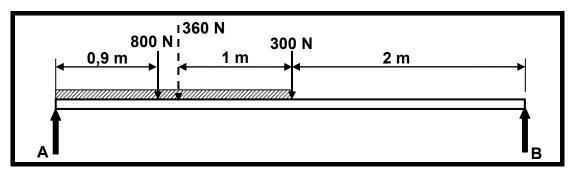
- Same direction ✓
- Clockwise ✓
- Positive ✓


(Any 1 x 1) (1) [28]

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	Rockwell hardness tester: A – Test piece / Work piece ✓ B – Diamond cone / Indenter ✓ C – Load ✓	
	D – Indentation \checkmark	(4)
7.2	Moment tester: To determine the reactions \checkmark on either side \checkmark of a simply loaded beam.	(2)
7.3	Tensile tester: Operation: An increasing ✓ axial tensile force ✓ is exerted onto a piece of material while measuring the corresponding ✓ elongation, ✓	(4)
7.4	Depth-micrometer: ✓ ✓ ✓ 66,64 mm	(3) [13]

QUESTION 8: FORCES (SPECIFIC)


8.1 Forces:

(13)

$R^2 = HC^2 + VC^2$	\checkmark		
$\sqrt{R^2} = \sqrt{433,03^2 + 476,7}$	·8 ²		
R = 644,08 N	\checkmark		
		(2)	
Tan œ <mark>VC</mark> ✓			
476,78			
$=\frac{113,13}{433,03}$			
Φ= 47,75° ✓			
		(2)	
	\checkmark		
Resultant = 644,08 N	17,75° North from West or (Bearing 312,25°)	(1)	(13)

8.2 Moments:

Calculate A: Take moments about B.

$$\Sigma RHM = \Sigma LHM$$

Calculate B: Take moments about A.

$$\Sigma LHM = \Sigma RHM$$

$$(B \times 4) = (300 \times 2) + (360 \times 1) + (800 \times 0,9)$$

$$\frac{4B}{4} = \frac{1680}{4}$$

$$B = 420 N$$

(8)

8.3 **Stress and Strain:**

8.3.1 **Diameter of the shaft:**

$$b = \frac{F}{A}$$

$$A = \frac{F}{b}$$

$$= \frac{40 \times 10^{3}}{20 \times 10^{6}}$$

$$A = 2 \times 10^{-3} \text{ m}^{2}$$

$$A = \frac{F}{4}$$

$$D = \sqrt{\frac{4A}{F}}$$

$$D = \sqrt{\frac{4(2 \times 10^{-3})}{F}}$$

$$D = 50,46 \times 10^{-3} \text{ m}$$

$$D = 50,46 \text{ mm}$$

8.3.2 **Strain:**

$$E = \frac{b}{\omega} \qquad \checkmark$$

$$= \frac{b}{E} \qquad \checkmark$$

$$= \frac{20 \times 10^{6}}{90 \times 10^{9}} \qquad \checkmark$$

$$= 0,22 \times 10^{-3} \qquad \checkmark \qquad (4)$$

8.3.3 Change in length:

(5)

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 **Preventative maintenance:**

- To prevent injury or death.(e.g. Brake failure) ✓
- To prevent financial loss due to damage suffered as a result of part failure. ✓
- To prevent loss of production time. ✓

9.2 **Preventative maintenance procedures on gear drive systems:**

- Check and replenish lubrication levels. \checkmark
- Ensure that the gears are properly secured to the shafts. ✓
- Clean and replace oil filters. ✓
- Report excessive noise and wear, vibration and overheating for expert attention. ✓

(Any 2 x 1) (2)

(Any 2 x 1)

9.3 **Causes for the malfunctioning of belt drive systems:**

- Incorrect belt tension. ✓
- Incorrect size belt. ✓
- Misalignment of the pulleys. ✓
- Dirt on the contact surfaces between the belt and the pulley. \checkmark
- Lubricant on the contact surfaces between the belt and the pulley. ✓
- Overloading the drive system. ✓
- Lack of maintenance.

(Any 2 x 1) (2)

9.4 **Procedures to reduce the wear on a chain drive system:**

- Ensure sufficient lubrication. ✓
- Accurate alignment of the sprockets. ✓
- Keep the chain drive components clean. ✓
- Maintain the correct chain tension in the system. ✓
- Regular maintenance. ✓

(Any 2 x 1) (2)

DBE/2019

(2)

9.5 **Properties of materials:**

9.5.1 Fibre glass:

- High strength ✓
- Light weight ✓
- Water resistant ✓
- UV-resistant ✓

(Any 2 x 1) (2)

9.5.2 Vesconite:

- Low friction. ✓
- Easily machined. ✓
- High load carrying capacity. ✓
- Self-lubricating. ✓
- Cost-effective. ✓
- Performs well in unhygienic, dirty and un-lubricated environments. ✓
- Ensures long life together with low maintenance. ✓

(Any 2 x 1) (2)

9.5.3 **Carbon fibre:**

- High strength ✓
- Light weight ✓
- Water resistant ✓
- UV-resistant ✓
- Self-lubricating ✓

(Any 2 x 1) (2)

9.6 'Thermoplastic' composites or 'Thermo hardened' (thermosetting) composites:

9.6.	1 Teflon: Thermoplastic ✓	(1)
9.6.2	2 Bakelite: Thermo hardened ✓	(1)
9.6.3	3 Polyvinyl chloride (PVC): Thermoplastic ✓	(1)
•	her coefficient of friction: ber ✓	(1)

9.7

[18]

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 **Calculations on square threads:**

10.1.1 **The pitch diameter:**

$$P = \frac{\text{Lead}}{\text{Number of starts}} \qquad \checkmark$$
$$= \frac{30}{3}$$
$$= 10 \text{ mm} \qquad \checkmark$$

Pitch diameter =
$$OD - \left(\frac{P}{2}\right)$$

= $75 - \left(\frac{10}{2}\right) \checkmark$
= $70 \text{ mm} \checkmark$ (4)

10.1.2 **The helix angle of the thread:**

Helix angle
$$\tan \Phi = \frac{\text{lead}}{\text{Ex pitch diameter}} \checkmark$$

$$= \frac{30}{\text{Ex 70}} \checkmark$$
$$\Phi = 7,77^{\circ} \text{ or } \Phi = 7^{\circ}46' \checkmark \qquad (4)$$

10.1.3 **The leading tool angle:**

Leading tool angle =
$$90^{\circ} - (\text{helix} + \text{clearance angle})$$

= $90^{\circ} - (7^{\circ}46' + 3^{\circ}) \checkmark$
= $79^{\circ}14' \checkmark$

OR

Leading tool angle =
$$90^{\circ} - (\text{helix} + \text{clearance angle})$$

= $90^{\circ} - (7,77^{\circ} + 3^{\circ}) \checkmark$
= $79,23^{\circ} \checkmark$

(2)

10.1.4 **The following tool angle:**

Following tool angle =
$$90^{\circ} + (\text{helix} - \text{clearance angle})$$

= $90^{\circ} + (7^{\circ}46' - 3^{\circ})$
= $94^{\circ}46'$
✓

OR

Following tool angle =
$$90^{\circ} + (\text{helix} - \text{clearance angle})$$

= $90^{\circ} + (7,77^{\circ} - 3^{\circ})$ \checkmark
= $94,77^{\circ}$ \checkmark (2)

10.2	Measure	rements of a screw thread:					
	10.2.1	Metric screw thread ✓	(1)				
	10.2.2	Crest diameter / Outside diameter / Diameter \checkmark	(1)				
	10.2.3	Pitch ✓	(1)				
10.3	Angles	of a square thread cutting tool:					
	10.3.1	A = Helix angle ✓	(1)				
	10.3.2	B = Leading tool angle \checkmark	(1)				
	10.3.3	C = Following tool angle \checkmark	(1) [18]				

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Advantages of a chain drive system compared to a belt drive system:

- Chain drives are stronger. ✓
- No slip occurs. ✓
- Faster speeds can be obtained as with belt drives. ✓

(Any 2 x 1) (2)

(4)

(6)

11.2 Hydraulic system:

11.2.1 Fluid pressure:

$$A_{A} = \frac{E_{A}^{2}}{4} \qquad \checkmark$$
$$= \frac{E \times 0.022^{2}}{4}$$
$$= 0.38 \times 10^{-3} \text{ m}^{2} \qquad \checkmark$$

$$p = \frac{F_A}{A_A}$$

= $\frac{250}{0.38 \times 10^{-3}}$ ✓
= 0.66 × 10⁶ Pa or 657665,05 Pa or 0.66 MPa ✓

11.2.2 Load on piston B:

$$A_{B} = \frac{F_{B}^{2}}{4} \qquad \checkmark$$

$$= \frac{F \times 0,248^{2}}{4}$$

$$= 48,31 \times 10^{-3} \text{ m}^{2} \qquad \checkmark$$

$$p = \frac{F}{A} \qquad \checkmark$$

$$F_{B} = p \times A_{B} \qquad \checkmark$$

$$= (0,66 \times 10^{6}) \times (48,31 \times 10^{-3}) \qquad \checkmark$$

$$= 31884,6 \text{ N} \quad \text{or} \quad 31,88 \text{ kN} \quad \checkmark$$

11.3 **Purpose of a filter in a hydraulic system:**

- The purpose of the filter is to retain, ✓ by some porous medium, the insoluble contaminates ✓ from the fluid.
- Filter ✓ the oil of contaminates. ✓

(Any 1 x 2) (2)

(5)

11.4 V-belt drive system – Power transmitted:

$$\frac{T_{1}}{T_{2}} = 2,5$$

$$T_{2} = \frac{T_{1}}{2,5} \qquad \checkmark$$

$$= \frac{440}{2,5}$$

$$= 176 \text{ N} \qquad \checkmark$$

$$P = (T_{1} - T_{2}) \text{ v} \qquad \checkmark$$

$$= (440 - 176) 10 \qquad \checkmark$$

$$= 2640 \text{ Watt or} \qquad = 2,64 \text{ kW} \qquad \checkmark$$

11.5.1 **The number of teeth on the idler gear:**

$$T_{B} \times N_{B} = T_{C} \times N_{C}$$

$$T_{B} = \frac{T_{C} \times N_{C}}{N_{B}} \qquad \checkmark$$

$$= \frac{80 \times 260}{800} \qquad \checkmark$$

$$= 26 \text{ teeth} \qquad \checkmark \qquad (3)$$

11.5.2 **The rotation frequency of the driver gear:**

$$T_{A} \times N_{A} = T_{C} \times N_{C}$$

$$N_{A} = \frac{T_{C} \times N_{C}}{T_{A}} \qquad \checkmark$$

$$= \frac{80 \times 260}{60} \qquad \checkmark$$

$$= 346,67 \text{ r/min} \qquad \checkmark$$
(3)

11.6 **Chain drive system – Gear ratio (GR):**

$$GR = \frac{DN}{DR} \qquad \checkmark$$
$$= \frac{32}{48} \qquad \checkmark$$
$$= 0,67:1 \qquad \checkmark \qquad (3)$$

[28] TOTAL: 200