

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING NOVEMBER 2022

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 23 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	B✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	A 🗸	(1)
1.6	B√	(1)

QUESTION 2: SAFETY (GENERIC)

2.1	 Vital functions: Breathing ✓ Heart rate / pulse ✓ State of consciousness ✓ (Any 2 x 1) 	(2)
2.2	 Safety glasses during grinding: To prevent any injuries to the operator's eyes. ✓ To protect eyes from sparks and debris. ✓ To prevent blindness due to injury. ✓ 	(1)
2.3	 Type of guards: Fixed guard ✓ Automatic sweep-away ✓ Self-adjusting / automatic guard ✓ Electronic presence sensing device ✓ Two-hand control device. ✓ 	(2)
2.4	 Precautions before gas welding operations can be undertaken: An operator has been instructed on how to use the equipment safely. ✓ A workplace is effectively partitioned off. ✓ An operator uses protective equipment (PPE). ✓ Ensure that fire equipment is at hand. ✓ Ensure that the equipment is in a safe working condition. ✓ Ensure the gas equipment is set-up correctly. ✓ Ensure the area is well ventilated. ✓ Ensure that the working area is safe. ✓ 	(3)
2.5	TWO disadvantages of the product layout:	

- Lack of flexibility. ✓
- Optimum use of equipment is not possible. ✓ (2)

QUESTION 3: MATERIALS (GENERIC)

3.1 **THREE properties:**

- Toughness ✓
 - Hardness / Wear resistance ✓
 - Softness ✓
 - Case hardness ✓
 - Ductility ✓
 - Malleability ✓
 - Elasticity ✓
 - Brittleness ✓
 - Strength ✓

(Any 3 x 1) (3)

(4)

(3)

3.2 Heat treatment processes:

3.2.1 **Tempering:**

- It consists of heating the hardened steel ✓ to a temperature below its critical temperature (colour chart).
- Soaking it at this temperature for a period of time, ✓
- Quenching/cooling it rapidly in water, brine or oil. ✓

3.2.2 Hardening:

- The steel is heated slightly higher than the upper critical temperature. ✓
- The steel is soaked at that temperature for the required time. ✓
- The steel is then rapidly cooled by quenching in water, brine or oil. ✓

3.3 **Examples of case-hardening:**

- Bearing cases ✓
- Bearing ball ✓
- Bearing needles ✓
- Crankshafts ✓
- Gears ✓
- Camshafts ✓
- Cylinder sleeves ✓
- Hammer head ✓
- Jack Hammer drill bits ✓

(Any 2 x 1) (2)

3.4 Why steels are cooled down in still air away from draughts:

This prevents sudden cooling of localised spots, \checkmark which might cause distortion/cracks. \checkmark

(2) **[14]**

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	A✓	(1)
4.3	B✓	(1)
4.4	D✓	(1)
4.5	C ✓	(1)
4.6	A✓	(1)
4.7	B✓	(1)
4.8	B✓	(1)
4.9	C ✓	(1)
4.10	A✓	(1)
4.11	B✓	(1)
4.12	A✓	(1)
4.13	D✓	(1)
4.14	D✓	(1) [14]

Copyright reserved

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 **TWO advantages of cutting using the tailstock set-over method:**

- Long tapers can be cut. ✓
- The automatic feed can be used. \checkmark
- Good finish is obtained ✓

(Any 2 x 1) (2)

5.2 **Big diameter of taper:**

$$\tan \frac{\theta}{2} = \frac{D - d}{2 \times l}$$

$$D = \operatorname{Tan} \frac{\theta}{2} (2 \times l) + d \checkmark$$

$$= \operatorname{Tan} \frac{8^{\circ}}{2} (2 \times 290) + 42 \checkmark$$

$$= \operatorname{Tan} 4^{\circ} (580) + 42 \checkmark$$

D=82,56 mm ✓ (4)

5.3 **Calculation of parallel key:**

5.3.1 Width =
$$\frac{D}{4}$$

= $\frac{65}{4}$ \checkmark
= 16,25 mm \checkmark (2)
5.3.2 Thickness = $\frac{D}{6}$
= $\frac{65}{6}$ \checkmark
= 10,83 mm \checkmark (2)
5.3.3 Length = 1,5 × diameter of shaft
= 1,5 × 65 \checkmark

$$= 97,5 \text{ mm} \checkmark$$
 (2)

5.4 **Disadvantages of straddle milling:**

- The cutters used place more stress on the machine's spindle. ✓
- The milling machine works harder due to more than one cutter being used. ✓

./

- There can be more vibration. ✓
- Poor finishing. ✓

(Any 1 x 1) (1)

5.5 **TWO milling processes:**

The milling of:

- Bevels ✓
- Keyways ✓
- Slides ✓
- Chamfers ✓
- Other angles ✓
- Grooves ✓
- Jigs recesses ✓
- Tees ✓
- Dovetail slots ✓
- Surface milling ✓
- Drilling ✓
- Reaming ✓
- Tapping ✓
- Up-cut milling ✓
- Down-cut milling ✓

(Any 2 x 1) (2)

5.6 **Calculate X:**

 $x = \frac{\text{Diameterof workpiece} - \text{Thickness of cutter}}{2}$

2

$$=\frac{60-12}{2} \checkmark$$
$$=\frac{48}{2}$$

=24mm ✓

(3) **[18]**

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 Gear calculations:

6.1.1 **Module:**

Module =
$$\frac{PCD}{T}$$

= $\frac{165}{110}$ \checkmark
= 1,5 \checkmark

(2)

6.1.2 **Outside diameter:**

OD = PCD +2(m)
=
$$165 + 2(1,5) \checkmark$$
 OR = $1,5(110 + 2) \checkmark$
= $168 \text{ mm} \checkmark$ = $168 \text{ mm} \checkmark$ (2)

6.2 **Dovetail calculations:**

6.2.1 Maximum width distance of dove tail. (W)

Calculate DE:

$Tan \alpha = \frac{DE}{AD}$		$Tan \theta = \frac{AD}{DE}$
$DE = tan \alpha \times AD \checkmark$	OR	$DE = \frac{AD}{Tan60^{\circ}} \checkmark$
= tan30°×30 ✓	UN	$=\frac{30}{Tan60^\circ} \checkmark$
=17,32mm ✓		=17,32mm ✓
W = 120 + 2(DE) ✓		
= 120 + 2(17,32) √		
= 120 + 34,64		

= 154,64 mm ✓

(6)

6.2.2 **Distance between the rollers. (m)**

Calculate AC:

$$Tan\alpha = \frac{BC}{AC}$$

$$AC = \frac{BC}{Tan\alpha} \checkmark$$

$$Tan\theta = \frac{AC}{BC}$$

$$AC = Tan \theta \times BC$$
 \checkmark

OR

<u>11</u> ✓ Tan30°

=19,05mm ✓

=19,05mm 🗸

$$m = W - [(2(AC) + 2(R)] \checkmark$$

= 154,64 - [2(19,05) + 2(11)] \sqrt{}
= 154,64 - (38,10 + 22)
= 94,54 mm \sqrt{}
OR
$$m = W - 2(AC + R) \checkmark$$

= 154,64 - 2(19,05 + 11) \sqrt{}
= 154,64 - (38,10 + 22)
= 94,54 mm \sqrt{}
OR
$$m = W - 2(AC) - 2(R) \checkmark$$

= 154,64 - 2(19,05) - 2(11) \sqrt{}
= 154,64 - 38,11 - 22
= 94,54 mm \sqrt{}

(6)

6.3 **Milling of spur gear:**

6.3.1 Indexing:

Indexing=
$$\frac{40}{n} = \frac{40}{163}$$
$$= \frac{40}{A} = \frac{40}{160} \checkmark$$
$$= \frac{1}{4} \times \frac{6}{6}$$
$$= \frac{6}{24} \checkmark$$

Approximate indexing: 6 holes on a 24-hole circle. \checkmark

OR

7 holes on a 28-hole circle. \checkmark

(3)

6.3.2 Change gears:

$$\frac{\mathrm{Dr}}{\mathrm{Dn}} = (\mathrm{A} - \mathrm{n}) \times \frac{40}{\mathrm{A}}$$

$$=(160-163) \times \frac{40}{160}$$
 \checkmark

$$= -3 \times \frac{40}{160} \checkmark$$

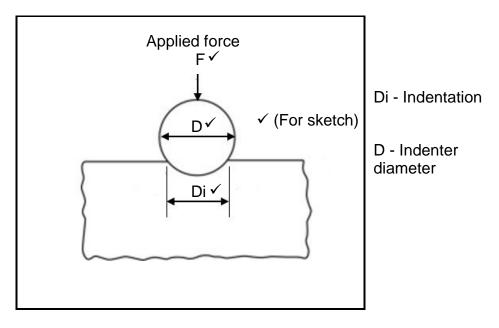
$$=\frac{-120}{160}$$

$$= \frac{12}{16} \times \frac{2}{2} \checkmark \text{OR} \qquad \frac{12}{16} \times \frac{4}{4} \checkmark$$
$$= \frac{24}{32} \checkmark \text{OR} \qquad \frac{48}{64} \checkmark$$

(5)

6.4 TWO types of balancing methods: Static balance (stationary balancing) ✓ Dynamic balance (running balancing) ✓ 6.5 TWO advantages of correct balancing: Prevents vibrations. ✓ Prevents poor finish / ensure good finish. ✓ Prevents wear on bearings / components. ✓ Prevents accidents. ✓ Improve production. ✓

- Promotes accuracy. ✓
- Prevent damage to workpiece. ✓
- Prevent components from loosening. ✓


(Any 2 x 1) (2) [28]

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 **Function of a screw-thread micrometer:**

The screw-thread micrometer is specifically designed to measure \checkmark the pitch diameter \checkmark of a screw thread.

7.2 Brinell labelled drawing:

7.3 **Types of forces:**

- Tensile force ✓
- Compressive force ✓
- Shear force ✓
- Torsional force ✓
- Gravitational force ✓
- Normal Force ✓
- Frictional Force ✓
- Reaction Force ✓

(Any 2 x 1) (2)

7.4 **ISO-Metric screw-thread:**

- 7.4.1 A Root/Root land ✓
 - B Pitch diameter / Effective diameter / Mean diameter 🗸
 - C Crest diameter / Major diameter / Outside diameter / Basic diameter ✓

7.4.2 **Pitch diameter:** $Dp = Dn - (0,866 \times P)$ $Dp = 12 - (0,866 \times 1,75) \checkmark$ Dp = 12 - 1,52 $Dp = 10,48 \text{ mm} \checkmark$

(2) **[13]**

(3)

(4)

(2)

QUESTION 8: FORCES (SPECIFIC)

8.1 **Forces:**

8.1.1 Horizontal component:

 $\Sigma HC = 25 \cos 90^{\circ} + 40 \cos 0^{\circ} + 55 \cos 70^{\circ} - 120 \cos 30^{\circ}$

 Σ HC = 0 + 40 + 18,81 - 103,92

 $\Sigma HC = -45,11N \checkmark$

(4)

8.1.2 Vertical component:

 $\sum VC = 25 \sin 90^{\circ} - 40 \sin 0^{\circ} - 55 \sin 70^{\circ} - 120 \sin 30^{\circ}$

$$\Sigma VC = 25 - 0 - 51,68 - 60$$

 \sum VC = -86,68N \checkmark

OR

(4)

(8)

(2)

Force	θ	8.1.1 ∑HC/x = F	cosθ	8.1.2 ∑VC/y =	Fsinθ
25N	90°	HC = 25cos90°	0N	VC = 25sin90°	25N 🗸
40N	0°	$HC = 40\cos^{\circ}$	40N ✓	VC = 40sin0°	0N
55N	290°	HC = 55cos290°	18,81N ✔	VC = 55sin290°	-51,68N ✓
120N	210°	HC = 120cos210°	-103,92N ✓	VC = 120sin210°	-60N ✓
		Total	-45,11N ✓		-86,68N ✓

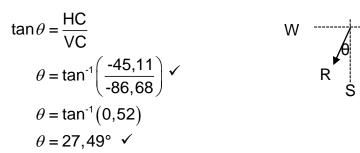
8.1.3 **Resultant:**

$$R^{2} = VC^{2} + HC^{2}$$

$$R = \sqrt{(-86,68)^{2} + (-45,11)^{2}} \quad \checkmark$$

$$R = \sqrt{9549,24}$$

$$R = 97,72N \quad \checkmark$$


8.1.4 Angle and direction of resultant:
Angle:
$$\tan \theta = \frac{VC}{HC}$$

$$\theta = \tan^{-1} \left(\frac{-80,08}{-45,11} \right) \checkmark$$
$$\theta = \tan^{-1} (1,92)$$
$$\theta = 62,5^{\circ} \checkmark$$

W

OR

Direction:

R = 97,72N 62,5°South of West \checkmark OR R = 97,72N 27,5°West of South \checkmark

8.2 UDL Beam:

uted load:				
distributed loa	ad:			
= 84 N ✓				
: 84	N ✓	N 🗸	N ✓	KN ✓

8.2.2 Reaction in support A: Take moments about B: $\sqrt{75 \times 12,5} + (84 \times 5,5) + (55 \times 0) = (A \times 14)$

$$937,5+462+0=14A$$

$$A = \frac{1399,5}{14} \quad \checkmark$$

A =99,96N ✓ (5)

(3)

(1)

8.2.3 Reaction in support B:
Take moments about A:

$$\checkmark$$
 \checkmark \checkmark \checkmark
 $(B \times 14) = (75 \times 1,5) + (84 \times 8,5) + (55 \times 14)$
 $14B = 112,5 + 714 + 770$
 $B = \frac{1596,5}{14}$ \checkmark

(5)

(3)

8.3.1 **Resistance area:**

$$\sigma = \frac{F}{A}$$

$$A = \frac{F}{\sigma} \quad \checkmark$$

$$A = \frac{85 \times 10^{3}}{36 \times 10^{6}} \quad \checkmark$$

$$A = 2,36 \times 10^{-3} \text{ m}^{2} \quad \checkmark$$

8.3.2 Change in length:

$$E = \frac{\sigma}{\varepsilon}$$

$$\varepsilon = \frac{\sigma}{E} \checkmark$$

$$\varepsilon = \frac{36 \times 10^{6}}{90 \times 10^{9}} \checkmark$$

$$\varepsilon = 4 \times 10^{-4} \checkmark$$

$$\varepsilon = \frac{\Delta L}{L}$$

$$\Delta L = \varepsilon \times L \quad \checkmark$$

$$\Delta L = 4 \times 10^{-4} \times 0.12 \quad \checkmark$$

$$\Delta L = 4.8 \times 10^{-5} \text{ m}$$

$$\Delta L = (4.8 \times 10^{-5}) \times 1000$$

$$\Delta L = 0.048 \text{ mm} \quad \checkmark$$

(6) **[33]**

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1	 Failure to conduct preventative maintenance: Risk of injury or death. ✓ Financial loss due to damage suffered as a result of part failure. ✓ Loss of valuable production time. ✓ Equipment failure. ✓ Damage to material or project. ✓ 	(3)
9.2	Mechanical drives: • Belt drives ✓ • Gear drives ✓ • Chain drives ✓ • Hydrostatic drives ✓ • Hydraulic drives ✓ • Cable drives ✓ • Pneumatic drive ✓ (Any 3 x 1)	(3)
		(0)
9.3	Enhance the strength of glass fibre: Polyester resin ✓	(1)
9.4	Properties: 9.4.1 Bakelite: • Stiff ✓ • Strong ✓ • Hard / wear resistant ✓ • Chemical resistance ✓ • Thermo hardened ✓ • Water resistant ✓ • Electrical isolation ✓ • Heat resistant ✓ • Brittleness ✓	(2)
	 9.4.2 Carbon fibre: Good fatigue resistance ✓ Heat resistance ✓ Tough ✓ Strong ✓ Semi rigid ✓ Good chemical resistance ✓ Light weight ✓ Water resistant ✓ Flexible ✓ 	(2)
	(Any 2 x 1)	(2)

9.5	 Manufacturing of PVC: Oil ✓ Salt ✓ Coal ✓ 	(Any 1 x 1)	(1)
9.6	 Ways to conduct preventive maintenance: Inspection ✓ Measuring ✓ Cleaning ✓ Lubricating ✓ Adjusting of parts ✓ Replacing of parts ✓ Tests ✓ 		
		(Any 3 x 1)	(3)
9.7	 Main types of plastic composites: Thermoplastic ✓ Thermosetting plastic / Thermo-hardened ✓ 		(2)
			(2)
9.8	Non-stick coatings for frying pans: Teflon ✓		(1) [18]

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Screw thread terminology:

10.1.1 **Lead:**

It is the distance \checkmark that the point (nut/bolt) on a screw thread will move / advance \checkmark along the axis, \checkmark when turned through one complete revolution / turn. \checkmark (4)

10.1.2 Helix angle:

It is the angle that the thread makes with a line perpendicular / $90^{\circ} \checkmark$ to the axis of the screw thread. \checkmark (2)

10.2 **Square Thread:**

10.2.1 **Pitch:**

Lead = Pitch × Number of starts

 $\mathsf{Pitch} = \frac{\mathsf{Lead}}{\mathsf{Number of starts}} \checkmark$

$$=\frac{42}{2}$$
 \checkmark

= 21 mm 🗸

10.2.2 Pitch diameter:

$$PD = OD - \frac{P}{2}$$
$$= 90 - \frac{21}{2} \checkmark$$

 $= 79,50 \text{ mm} \checkmark$ (2)

(3)

10.2.3 Helix angle of the thread:

$$\tan \theta = \frac{\text{Lead}}{\pi \times D_{\text{m}}}$$

$$\tan \theta = \frac{42}{\pi \times 79,50} \checkmark$$

$$\tan \theta = 0.168163713$$

$$\theta = \tan^{-1} 0.168163713$$

$$= 9.55^{\circ} \text{ or } 9^{\circ} 33' \checkmark \qquad (3)$$

10.2.4 Leading tool angle:

Leading tool angle = 90° - (helix angle + clearance angle)
= 90° - (9,55° + 3°)
$$\checkmark$$

= 77,45° or 77° 27' \checkmark (2)

10.2.5 **Following tool angle:**

Following tool angle =
$$90^\circ$$
 + (helix angle - clearance angle)
= 90° + ($9,55^\circ$ - 3°) \checkmark
= $96,55^\circ$ or 96° $33'\checkmark$

(2) [**18**]

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic calculations :

11.1.1 The fluid pressure in the hydraulic system in MPa:

$$A(Ram) = \frac{\pi d^{2}}{4}$$

$$A = \frac{\pi (0,25)^{2}}{4} \quad \checkmark$$

$$A = 0,049 \text{ m}^{2} \quad OR \quad 4,91 \times 10^{-2} \text{ m}^{2} \quad \checkmark$$

$$p = \frac{F}{A}$$

$$p = \frac{34000}{0,049} \quad \checkmark$$

$$p = 693877,55 \text{ Pa}$$

$$p = 0,69 \text{ MPa} \quad \checkmark$$

(4)

11.2

11.3

11.4 **Belt drive:**

11.4.1 **The rotational frequency in r/sec:**

$$\mathbf{N}_{\mathrm{Dr}} \times \mathbf{D}_{\mathrm{Dr}} = \mathbf{N}_{\mathrm{Dn}} \times \mathbf{D}_{\mathrm{Dn}}$$

$$N_{Dn} = \frac{N_{Dr} \times D_{Dr}}{D_{Dn}} \quad \checkmark$$

$$N_{Dn} = \frac{1330 \times 0.15}{0.32}$$
 ✓

$$N_{Dn} = \frac{623,44 \text{ r/min}}{60}$$

$$N_{Dn} = 10,39 \text{ r/sec } \checkmark$$
 (3)

11.4.2 **Power transmitted in Watt:**

$$P = \frac{(T_1 - T_2)\pi DN}{60}$$

$$P = (175 - 130)\pi \times 0.32 \times 10.39$$

$$P = 470.03 \text{ Watt } \checkmark$$

$$OR$$

$$P = \frac{(T_1 - T_2)\pi DN}{60}$$

$$P = \frac{(175 - 130)\pi \times 0.15 \times 1330}{60}$$

$$P = 470.06 \text{ Watt } \checkmark$$

(4)

11.5 Gear drive:

11.5.1 Identify gear drive:Compound gear drives system ✓

11.5.2 Rotational frequency of the input shaft NA:

 $\frac{N_{input}}{N_{output}} = \frac{Product \text{ of teeth on driven gears}}{Product \text{ of teeth on driver gears}}$

$$\frac{N_{A}}{N_{F}} = \frac{T_{B} \times T_{D} \times T_{F}}{T_{A} \times T_{C} \times T_{E}} \checkmark$$

$$\frac{N_{A}}{625} = \frac{40 \times 50 \times 80}{20 \times 35 \times 25} \checkmark$$

$$N_{A} = \frac{40 \times 50 \times 80 \times 625}{20 \times 35 \times 25}$$

$$N_{A} = 5714,29 \text{ r/min}$$
 (4)

11.6 **Torque on the lathe spindle:**

 $Torque(T) = Force \times Radius$

 $T = 6,25 \text{ Nm. } \checkmark$ (3)

[28]

(1)

TOTAL: 200