

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

MARKS: 200

These marking guidelines consist of 23 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	A✓	(1)
1.6	B✓	(1) [6]

3

QUESTION 2: SAFETY (GENERIC)

2.1 **Examination checks:**

- Severe bleeding ✓
 - Internal bleeding ✓
 - Head injuries ✓
 - Neck injuries ✓
 - Fractures ✓
 - Vital signs ✓

2.2

Physical abnormalities ✓

Rear view mirrors ✓

Self-adjusting guards ✓
Covered footswitch ✓

Two-hand / dual control device ✓
Additional emergency buttons ✓

Rear light curtains ✓
Automatic sweep-away ✓
Revolving warning lights ✓

(Any 2 x 1) (2)

(Any 2 x 1) (2)

2.3 **Grinding wheel:**

•

- The wheel should be rated above the speed of the motor. ✓
- Check for cracks on the grinding wheel. ✓
- Check for chips on the grinding wheel. ✓
- Check that the arbor hole is the correct size. ✓

Safety devices on the power-driven guillotine:
Finger protectors / Fixed guards / Blade guard ✓

- Must not be contaminated by oil/fluids or grease. ✓
- Correct size of the wheel. \checkmark
- Correct type of wheel for the material. ✓

2.4 Gas welding equipment – safety devices:

- Valve guard ✓
- Flash back arrestor ✓
- Pressure regulator ✓
- C-clamps on hoses/Parallel hose clips ✓
- Acetylene spindle key must always be in place. ✓
- Cylinder valves. ✓

(Any 2 x 1) (2)

(Any 2 x 1)

(2)

2.5 Advantages of process layout of machines are:

- High machine utilisation. ✓
- Better supervision. ✓
- Less interruption in the flow of work. \checkmark
- Lower equipment costs. ✓
- Better control of total manufacturing costs. ✓
- Greater flexibility. ✓

(Any 2 x 1) (2) [10]

5

QUESTION 3: MATERIALS (GENERIC)

3.1 **Colour code of metal:**

- To identify the type of metal. ✓
- To identify carbon content especially after the metal was stored. \checkmark
- To identify the profile/size of the metal. ✓

(Any 1 x 1) (1)

3.2 **Tests to determine properties of steel:**

3.2.1 Sound test:

Hardness ✓

Softness ✓

(Any 1 x 1) (1)

3.2.2 **Bending test:**

- Ductility ✓
- Bend strength ✓
- Fracture strength ✓
- Resistance to fracture
- Brittleness ✓
- Elasticity ✓
- Plasticity ✓
- Flexibility ✓

(Any 1 x 1) (1)

3.2.3 Machining test:

- Hardness ✓
- Strength ✓

3.3 Reasons metal soaked during heat treatment:

- To ensure uniform heat distribution \checkmark throughout the metal. \checkmark
- To achieve a uniform grain structure ✓ after cooling the metal. ✓

(Any 1 x 2) (2)

(Any 2 x 1)

(Any 1 x 1)

3.4 **Case hardening:**

- Carburising √
- Nitriding ✓
- Cyaniding ✓

3.5 Annealing process:

Heating the steel slightly above AC₃, (upper critical temperature) \checkmark soaking it for a required time/period \checkmark and then slow cooling \checkmark back to room temperature.

(3)

(2)

(1)

3.6 **Rapid quenching mediums:**

- Brine/Salt water ✓
- Water ✓
- Nitrogen ✓
- Oil ✓

(Any 2 x 1) (2)

3.7 **Heat treatment process:**

Tempering \checkmark

(1) **[14]**

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	B✓	(1)
4.2	B✓	(1)
4.3	C✓	(1)
4.4	B✓	(1)
4.5	C✓	(1)
4.6	B✓	(1)
4.7	B✓	(1)
4.8	A or D ✓	(1)
4.9	C✓	(1)
4.10	C✓	(1)
4.11	B✓	(1)
4.12	D✓	(1)
4.13	A✓	(1)
4.14	A✓	(1) [14]

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1 **Compression tester:**

5.1.1 **Function of the compression tester:**

- It measures the pressure created ✓ when the piston is at top dead centre on the compression stroke. ✓
- It is used to determine the condition of the piston rings ✓ after a wet compression test. ✓

(Any 1 x 2) (2)

5.1.2 **Reasons for low compression:**

- Worn cylinders ✓
- Worn piston rings ✓
- Worn piston ✓
- Leaking inlet valve ✓
- Leaking exhaust valve ✓
- Leaking cylinder head gasket ✓
- Cracked cylinder head ✓
- Cracked piston / Damaged piston. ✓
- Piston ring groove worn out and not holding pressure. ✓
- Insufficient volumetric efficiency. ✓
- Cracked cylinder sleeve. ✓

(Any 1 x 1) (1)

5.1.3 **Card-type compression tester:**

- The compression tester automatically records ✓ the readings on the card in the tester. ✓
- To eliminate the human error ✓ that can be made when taking the readings, ✓ in terms of estimations.

(Any 1 x 2) (2)

5.2 **Cylinder leakage tester:**

5.2.1 **Function:**

- To check where the combustion chamber/cylinder leaks gases ✓ during compression stroke. ✓
- To determine the percentage ✓ pressure loss ✓ from the combustion chamber.

(Any 1 x 2) (2)

5.2.2 **Gauge A:**

Percentage leakage (%) / Pressure leakage gauge ✓ (1)

5.2.3 **Control valve:**

- Used to calibrate the cylinder leakage tester. ✓
- Regulates the air pressure entering the cylinder leakage tester. ✓

(Any 1 x 1) (1)

5.3	Exhaus	Exhaust gas analysis unit of measure:			
	5.3.1	Carbon dioxide (CO₂): Percentage (%) ✓	(1)		
	5.3.2	Hydrocarbon (HC): Parts per million (ppm) ✓	(1)		
5.4	 For a zero. 				
	• For e	exhaust gases to get out of the hose. ✓	(2)		
5.5	 At the Unde Behin Betw By th The f 	e glove compartment (cubby hole). ✓ er the dashboard by the driver. ✓ nd a trim panel. ✓ reen the front seats. ✓ ne ashtray. ✓ floor panel. ✓ e fuse box. ✓ (Any 2 x 1	I) (2)		
5.6	The vThe vThe v	tion typed into the diagnostic scanner: vehicle identification number (VIN). ✓ make of the vehicle. ✓ model of the vehicle. ✓ engine type. ✓			
		(Any 3 x 1) (3)		
5.7	Wheel b Static ✓	balancing:	(1)		
5.8	Gauge 1 Gauge 2	ne bubble gauge: - Zero scale/level ✓ 2 - Castor ✓			
		3 - King pin inclination ✓ 4 - Camber ✓	(4) [23]		

QUESTION 6: ENGINES (SPECIFIC)

6.1	Cranksh	Crankshaft of a four-cylinder engine:				
	6.1.1	Label the crank shaft: A – Crank nose/vibration damper mounting ✓ B – Main journals ✓ C – Big-end journals / Crankpin journals ✓ D – Counterweight/Crank web ✓		(4)		
	6.1.2	 Correcting crank shaft imbalance: By removing metal/weight from the crank webs. By adding metal/weight to the crank webs. ✓ 	✓	(2)		
6.2	Vibratio	n dampers:				
	6.2.1	Label: A – Friction disc ✓ B – Crankshaft ✓ C – Secondary flywheel ✓ D – Rubber cushion ✓		(4)		
	6.2.2	Location:		(')		
	0.2.2	Fitted to the front end/nose of the crankshaft. \checkmark		(1)		
	6.2.3	 Function: To smooth out / absorb/ minimize the engine vibrations. ✓ To counteract the torsion of the crankshaft. ✓ 				
			(Any 1 x 1)	(1)		
6.3	 Inline V-eng W-en Horiz Radia X-Eng U-eng Delta K-eng 	configurations:				

(Any 2 x 1)

(2)

6.4

Power strokes per revolution:

NSC – Marking Guidelines

DBE/November 2023

	6.4.1	Four-cylinder: 2 ✓		(1)
	6.4.2	Six-cylinder: 3 ✓		(1)
6.5	Turbo-ch	argers:		
	6.5.1	Type: Variable geometry turbo-charger ✓		(1)
	6.5.2	 Reason turbocharger boosts: It increases ✓ volumetric efficiency ✓ of the cylin It increases ✓ the pressure of the air ✓ entering the second s		(2)
	6.5.3	 Influence on the lifespan: The oil supply is clean. ✓ Use of the correct grading/type of oil. ✓ The exhaust gas does not become overheated. ✓ Adopting the proper switch-off procedure. ✓ Sufficient oil pressure. ✓ 	(Any 2 x 1)	(2)
6.6	 It requi It requi It suffe It tend It need Some 	 htages of a turbo-charger: hires pressure lubrication for high-speed bearings. ✓ hires pressure lubrication to act as a coolant. ✓ hers from lag. ✓ ls to heat the air, reducing its density. ✓ hers to be controlled from over-revving by the waste gat require a special shut-down procedure before the erged off. ✓ 	e. √	(2) (3)
6.7	Disadvar	ntage of superchargers:		
	6.7.1	 Roots supercharger: The least efficient supercharger. ✓ They add more weight to the vehicle. ✓ Usually large/bonnet(hood) must be modified. ✓ They move air in bursts. ✓ 	(Any 1 x 1)	(1)
	6.7.2	 Twin-screw supercharger: They are expensive. ✓ They require more precision manufacturing. ✓ 		

(Any 1 x 1) (1)

11

6.8 **Reasons for a supercharger with a turbocharger on its engine:**

- To overcome lag at low rpm. ✓
- To increase power at all rpm. ✓
- Outstanding fuel economy. ✓
- To increase torque at all rpm. ✓
- Reduces the parasitic effect/power sapping on the engine. ✓

(Any 2 x 1) (2)

[28]

Copyright reserved

(2)

QUESTION 7: FORCES (SPECIFIC)

7		1
1	•	

Indicated power:	Brake power
 Calculated using the volume and the indicated mean effective pressure. ✓ 	 Calculated using the torque developed. ✓
 Indicated power is the theoretical power. ✓ 	 Brake power is the actual power output of an engine. ✓
 Indicated power is calculated without considering any mechanical or other losses of the engine. ✓ 	 Calculated considering mechanical or other losses of the engine. ✓
	(Any 1 x 2)

7.2 **Calculations:**

Swept volume: 7.2.1

Swept volume =
$$\frac{\pi \times D^2}{4} \times L$$

= $\frac{\pi \times 7.5^2 \checkmark}{4} \times 8 \checkmark$
= 353,43 cm³ √ (3)

Original clearance volume: 7.2.2

$$CV = \frac{SV}{(CR - 1)}$$

= $\frac{353,43}{(10 - 1)} \checkmark$
= 39,27 cm³√ (3)

7.2.3

Stroke length:

$$SV = CV(CR - 1)$$

 $= 39,27(11 - 1) \checkmark$
 $= 392,7 \text{ cm}^3 \checkmark$

Swept volume =
$$\frac{\pi \times D^2}{4} \times L$$
 Area = $\frac{\pi \times 7.5^2}{4}$
= 44,18 cm² \checkmark
= $\frac{392,70}{44,18} \checkmark$
= 8,89 cm × 10
= 88,89 mm \checkmark

7.3 Methods to lower the compression:

- Fit thicker gasket between cylinder block and cylinder head. •
- Fit a shim between cylinder block and cylinder head. ✓
- Fit piston with suitable lower crowns. ✓
- Fit crankshaft with shorter stroke (with suitable connecting rods). ✓
- Decrease bore diameter. ✓ •

(Any 2 x 1) (2)

(6)

7.4 Prony brake test:

7.4.1 Torque: Torque = Force × radius Torque = $(30 \times 10) \times \frac{400}{1000} \checkmark$ (g = 10 m/s²) = 120 Nm√

OR

Torque =
$$(30 \times 9,81) \times \frac{400}{1000} \checkmark$$
 (g = 9, 81 m/s²)
= 117,72 Nm \checkmark

Copyright reserved

(4)

7.4.2 Brake power: BP = 2π NT = $2 \times \pi \times \left(\frac{2000}{60}\right) \times 120 \checkmark$ (g = 10 m/s²) = 25,13 kW \checkmark

OR

$$BP = 2\pi NT$$

$$= 2 \times \pi \times \left(\frac{2000}{60}\right) \times 117,72\checkmark \qquad (g = 9, 81 \text{ m/s}^2)$$

$$= 24,66 \text{ kW}\checkmark \qquad (3)$$

IP = PLANn

Where $P = 950 \times 10^3 Pa$

 $L = \frac{85}{1000} = 0,085 \text{ m } \checkmark$

$$A = \left(\frac{\pi \times 0.09^2}{4}\right) \checkmark$$
$$= 6.36 \times 10^{-3} \text{ m}^2 \checkmark$$

 $N = \frac{2000}{60 \times 2} \checkmark$ = 16,67 powerstrokes per second \checkmark

$$n = 4$$

$$IP = (950 \times 10^{3}) \times 0,085 \times (6,36 \times 10^{-3}) \times (16,67) \times 4\checkmark$$

= 34,24 kW \sqrt{ (7)}

7.4.4 **Mechanical efficiency:**

$$ME = \frac{BP}{IP} \times 100$$

= $\frac{25,13}{34,24} \checkmark \times 100$ (g = 10 m/s²)
= 73,39 % \checkmark

OR

$$ME = \frac{BP}{IP} \times 100$$

= $\frac{24,66}{34,24} \checkmark \times 100$ (g = 9, 81 m/s²)
= 72,02 % \checkmark

(2) **[32]**

QUESTION 8: MAINTENANCE (SPECIFIC)

8.1 Exhaust gas analysis:

8.1.1 Readings caused by a leak:

- Incorrect ✓ readings ✓
- No ✓ readings at all ✓

(Any 1 x 2) (2)

8.1.2 Ideal exhaust gas readings:

- Low carbon monoxide ✓
- High carbon dioxide ✓
- Low Hydrocarbon ✓

(Any 2 x 1) (2)

8.2 **Compression tester:**

- Ensure that the tester can handle the pressure you want to test. \checkmark •
- Ensure the rubber pipes are not perished. \checkmark •
- Ensure the relief valve is working on the tester. / Zero the tester. ✓
- Ensure you use the correct adapter for the plug hole. \checkmark •

(Any 2 x 1) (2)

8.3 Cylinder leakage test:

Fault	Possible cause
 Hissing noise at air intake. ✓ 	 Leaking inlet valve. ✓
 Hissing noise at exhaust. ✓ 	 Leaking exhaust valve. ✓
 Hissing noise at oil filler cap/dipstick. ✓ 	 Piston rings are worn. ✓
 Bubbles in the radiator. ✓ 	 Blown cylinder head gasket/Cracked cylinder head. ✓
 Hissing sound from adjacent spark plug hole ✓ 	 Blown cylinder head gasket between cylinders / crack between cylinders. ✓

(Any 3 x 2) (6)

8.4 Oil pressure test:

- Oil pressure when engine is idling. ✓
- Oil pressure when engine is cold. ✓
- Oil pressure when engine is hot. ✓
- Oil pressure on high revolutions. ✓

(Any 3 x 1) (3)

8.5 Fuel pressure:

- Faulty fuel pump ✓ •
- Blocked fuel filter ✓ •
- Cracked fuel line ✓ •
- Clogged pump strainer ✓ •
- Low voltage to the fuel pump ✓
- Faulty fuel pressure regulator ✓
- Empty fuel tank ✓
- Faulty fuel pump relay ✓
- Leaking fuel injectors ✓
- Blocked fuel line ✓ •

(Any 4 x 1) (4)

8.6 Radiator cap pressure test:

- Step 1: Obtain the release pressure on the cap or from manufacturer's specifications. ✓
- Step 2: Fit the radiator cap with the correct adaptor on the cooling system pressure tester. ✓
- **Step 3:** Now pump the tester while watching the release pressure on the gauge. ✓
- **Step 4:** Check that the cap holds the specified pressure. \checkmark

(4) [23]

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1 **Reasons for automatic gearbox preferred over manual gearbox:**

- There is no clutch pedal. (relieve the driver of clutch operation).
- There is no need to change gears. (relieve the driver of gearshift operation). ✓
- Allows the driver to concentrate on driving. ✓
- Smoother and easier driving of the vehicle. \checkmark
- It reduces driving fatigue. ✓
- It ensures great reduction of wheel spin. ✓
- The vehicle can be stopped suddenly without the engine stalling. \checkmark
- The system dampens all engine torsional vibrations. ✓

(Any 4 x 1) (4)

9.2 **Towing vehicle with automatic gearbox:**

- The drive wheels \checkmark must be lifted off the ground. \checkmark
- The vehicle ✓ should be lifted on a flatbed tow truck. ✓
- The drive shaft/propeller ✓ shaft should be removed.

(Any 1 x 2) (2)

9.3 **Torque converter:**

9.3.1 Functions:

- It transfers the torque and power from the engine to the gearbox. ✓
- It drives the front pump of the gearbox. \checkmark
- It isolates the engine from the gearbox when the vehicle is stationary. \checkmark
- It multiplies the torque of the engine. \checkmark
- Reduction of engine vibrations transmitted to the gearbox. ✓
- Turn the engine during the idle strokes. (flywheel effect) \checkmark

(Any 3 x 1) (3)

9.3.2 **Component that prevents slip:**

Pressure plate/Clutch assembly ✓

(1)

9.5

20 NSC – Marking Guidelines

9.4 **Brake band in automatic gearbox:**

9.4.1	Label: A – Band adjuster \checkmark B – Anchor \checkmark C – Lever \checkmark D – Brake band \checkmark	(4)
9.4.2	Function of brake band: The brake band holds the drum/annulus in a stationary position. \checkmark	(1)
9.4.3	Component controlling the brake band: Hydraulic piston ✓	(1)
Double	epicyclic gear train:	
9.5.1	First (1 st) gear / Gear reduction \checkmark	(1)
9.5.2	Second (2 nd) gear / Overdrive ✓	(1) [18]

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONIC) (SPECIFIC)

10.1 Steering mechanism:

The steering mechanism must enable the driver \checkmark to be in control of the path taken by the vehicle at all times. \checkmark

10.2 **Signs of wheel imbalance:**

- Excessive tyre wear ✓
- A poor ride/tracking ✓
- Vibrations on the steering wheel \checkmark
- Wheel bounce/hop ✓
- Wheel shimmy/wobble ✓
- Vibrations on the brake pedal \checkmark
- Excessive wear on the suspension \checkmark

(Any 2 x 1) (2)

10.3 Static wheel balance:

- Mount the wheel so that it is free to turn on a spindle through its center. \checkmark
- The spindle must be approximately horizontal and the wheel turning slowly. \checkmark
- If the wheel is out of balance, it will always come to rest with one point, the 'heavy spot', at the bottom. ✓
- To correct static imbalance, a small mass (weight) is applied to the wheel rim, diametrically opposite the 'heavy spot'. The size and position of the weight to be fitted are found by trial and error. ✓

10.4 **Negative caster angle:**

A - Kingpin ✓

- B Perpendicular line ✓
- C Negative caster angle ✓
- D Centre line of kingpin ✓

10.5 Electric fuel pump:

- Immediate supply of fuel when the ignition switch is turned on. \checkmark
- Low operation noise. ✓
- Less discharge pulsation of fuel. ✓
- Compact and light design. ✓
- It helps to prevent fuel leak. ✓
- It reduces vapour lock. ✓
- Delivers fuel at a higher rate / pressure. ✓

(Any 2 x 1) (2)

(4)

(2)

(4)

10.6 **Fuel delivery system:**

10.6.1 **Pressure regulator:**

- It keeps the pressure in the rail at a specified value. ✓
- It regulates the pressure in the rail. ✓

10.6.2 **Fuel filter:**

- Prevents dirt from entering the fuel line. ✓
- Prevents damaging or clogging of the injectors. ✓
- Prevents damage to the pressure regulator. ✓

(Any 1 x 1) (1)

(1)

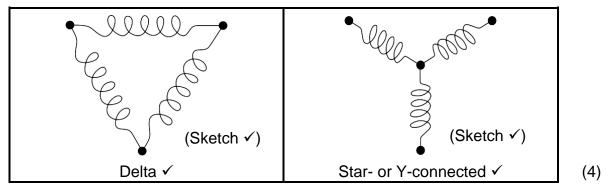
(4)

(Any 1 x 1)

10.7 **Air induction system:**

10.7.1 Label:

- A MAF sensor ✓
- B Air filter/Air filter housing ✓
- C Throttle valve / Throttle body ✓
- D Intake valve ✓


10.7.2 **Purpose:**

The air-induction system measures \checkmark and controls the air required for the combustion. \checkmark (2)

10.8 **Purpose of lambda sensor:**

The sensor measures the oxygen content in the flow of the exhaust gas \checkmark and then sends a signal to the engine control unit. \checkmark (2)

10.9 **Stator windings:**

10.10 **Increase the output frequency:**

- Increase the turns of wire/windings on the stationary coil/stator. \checkmark
- Increase the strength of the magnetic fields. ✓
- Increase the rotational frequency at which the magnets rotate. \checkmark

(Any 2 x 1) (2)

10.11 Adaptive speed control:

- To maintain a speed as set by the driver. ✓
- To adapt this speed and maintain a safe distance from the vehicle in front. ✓
- To provide a warning if there is a risk of a collision. \checkmark
- To provide a warning if the set speed is exceeded. ✓
- Reduces driver fatigue. ✓
- Improves fuel consumption. ✓

(Any 2 x 1) (2)

[32]

TOTAL: 200