

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 27 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	A✓	(1)
1.6	B√	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 **Examination checks:**

- Severe bleeding ✓
 - Internal bleeding ✓
 - Head injuries ✓
 - Neck injuries ✓
 - Fractures ✓
 - Vital signs ✓
 - Physical abnormalities ✓

(Any 2 x 1) (2)

(Any 2 x 1)

(Any 2 x 1)

(2)

(2)

2.2 Safety devices on the power-driven guillotine:

- Finger protectors / Fixed guards / Blade guard \checkmark
- Rear view mirrors ✓
- Rear light curtains ✓
- Automatic sweep-away ✓
- Revolving warning lights ✓
- Two-hand / dual control device \checkmark
- Additional emergency buttons ✓
- Self-adjusting guards ✓
- Covered footswitch ✓

2.3 **Grinding wheel:**

- The wheel should be rated above the speed of the motor. \checkmark
- Check for cracks on the grinding wheel. ✓
- Check for chips on the grinding wheel. ✓
- Check that the arbor hole is the correct size. ✓
- Must not be contaminated by oil/fluids or grease. ✓
- Correct size of the wheel. \checkmark
- Correct type of wheel for the material. ✓

2.4 Gas welding equipment – safety devices:

- Valve guard ✓
- Flash back arrestor ✓
- Pressure regulator ✓
- C-clamps on hoses/Parallel hose clips ✓
- Acetylene spindle key must always be in place. ✓
- Cylinder valves. ✓

(Any 2 x 1) (2)

2.5 Advantages of process layout of machines are:

- High machine utilisation. ✓
- Better supervision. ✓
- Less interruption in the flow of work. \checkmark
- Lower equipment costs. ✓
- Better control of total manufacturing costs. ✓
- Greater flexibility. ✓

(Any 2 x 1) (2)

QUESTION 3: MATERIALS (GENERIC)

3.1 **Colour code of metal:**

- To identify the type of metal. ✓
- To identify carbon content especially after the metal was stored. \checkmark
- To identify the profile/size of the metal. ✓

(Any 1 x 1) (1)

3.2 **Tests to determine properties of steel:**

3.2.1 Sound test:

- Hardness ✓
- Softness ✓

(Any 1 x 1) (1)

3.2.2 Bending test:

- Ductility ✓
- Bend strength ✓
- Fracture strength ✓
- Resistance to fracture
- Brittleness ✓
- Elasticity ✓
- Plasticity ✓
- Flexibility ✓

(Any 1 x 1) (1)

3.2.3 Machining test:

- Hardness ✓
- Strength ✓

3.3 Reasons metal soaked during heat treatment:

- To ensure uniform heat distribution \checkmark throughout the metal. \checkmark
- To achieve a uniform grain structure ✓ after cooling the metal. ✓

(Any 1 x 2) (2)

(Any 1 x 1)

(Any 2 x 1)

3.4 **Case hardening:**

- Carburising √
- Nitriding ✓
- Cyaniding ✓

3.5 **Annealing process:**

Heating the steel slightly above AC₃, (upper critical temperature) \checkmark soaking it for a required time/period \checkmark and then slow cooling \checkmark back to room temperature.

(3)

(2)

(1)

3.6 **Rapid quenching mediums:**

- Brine/Salt water ✓
- Water ✓
- Nitrogen ✓
- Oil ✓

(Any 2 x 1) (2)

3.7 **Heat treatment process:**

Tempering \checkmark

(1) **[14]**

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	D✓	(1)
4.2	A✓	(1)
4.3	A ✓	(1)
4.4	C ✓	(1)
4.5	D✓	(1)
4.6	B✓	(1)
4.7	B✓	(1)
4.8	A✓	(1)
4.9	C✓	(1)
4.10	D✓	(1)
4.11	B✓	(1)
4.12	A ✓	(1)
4.13	C ✓	(1)
4.14	D✓	(1)

[14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 **Disadvantages of compound slide method**

- Only short tapers can be cut. ✓
- It causes fatigue to the operator. ✓
- The automatic feed of the machine cannot be used. \checkmark

(Any 2 x 1) (2)

5.2 **Taper calculations:**

5.2.1 Length of taper:

$$\mathsf{Tan}\frac{\theta}{2} = \frac{\mathsf{D}\text{-}\mathsf{d}}{2\times l}$$

$$2 \times l = \frac{\mathsf{D} \cdot \mathsf{d}}{\tan \frac{\theta}{2}} \checkmark$$

$$2l = \frac{78-55}{\tan 4^{\circ}} \checkmark$$

$$2l = \frac{23}{0,069926811}$$

$$l = \frac{328,9153283}{2}$$
 \checkmark

(4)

5.2.2 **Tailstock set-over:**

Set - over
$$= \frac{L(D-d)}{2l}$$
$$= \frac{\cancel{284,46(78-55)}}{2 \times 164,46 \checkmark}$$

 $= 19,89 \text{ mm} \checkmark$ (4)

5.3 **Key ways:**

5.3.1	Width:	
	Width = $\frac{D}{4}$	
	Width = $\frac{83}{4}$ \checkmark	
	= 20,75 mm ✓	(2)
5.3.2	Thickness:	
	Thickness = $\frac{D}{6}$	
	Thickness = $\frac{83}{6}$ ✓	
	= 13,83 mm ✓	(2)
5.3.3	Length:	
	Length = $1,5 \times$ diameter of shaft	
	=1,5×83 *	
	=124,50 mm ✓	(2)
Straddle A. Sic	milling: de and face cutter / Milling cutters. ✓	

B. Arbor / Spacers / Spindle / Axle ✓

(2) **[18]**

5.4

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 Gear terminology:

6.1.1 Pitch-circle diameter: PCD = m × T $CP = m × \pi$ = 2,5 × 180 \checkmark = 2,5 × π = 450 mm \checkmark 7,85 mm \checkmark OR $PCD = \frac{CP × T}{\pi}$ = $\frac{7,85 \times 180}{\pi}$ = 450 mm \checkmark (2)

6.1.2 **Dedendum:**

$Dedendum = 1,157 \times m$		$Dedendum = 1,25 \times m$	
=1,157×2,5 ✓	OR	$=$ 1,25 \times 2,5 \checkmark	
= 2,89 mm ✓		= 3,13 mm ✓	(2)

6.1.3 **Outside diameter:**

$$OD = PCD + 2(m) = 450 + 2(2,5) \checkmark = 455 mm \checkmark$$
(2)

6.2 **Dovetails:**

W = 136 + 2(DE)m = W - [2(AC) + 2(R)] **OR** m = W - 2(AC + R) **OR** m = W - 2(AC) - 2(R)

6.2.1 Maximum width distance of dove tail: (W)

Calculate DE or y:

$\tan \theta = \frac{DE}{AD}$ $DE = \tan \theta \times AD \checkmark$ $= \tan 30^{\circ} \times 50 \checkmark$ $= 28,87 \text{ mm} \checkmark$	OR	$\tan \theta = \frac{AD}{DE}$ $\tan 60^\circ = \frac{50}{DE} \checkmark$ $DE = \frac{50}{\tan 60^\circ} \checkmark$ $= 28,87 \text{ mm} \checkmark$
W =136 + 2(DE) ✓		

 \checkmark

 $=193,74 \,\mathrm{mm} \,\checkmark$ (6)

6.2.2 Distance between the rollers: (m)

Calculate AC or x:

$$Tan\alpha = \frac{BC}{AC}$$

$$AC = \frac{BC}{Tan\alpha} \checkmark$$

$$Tan\theta = \frac{AC}{BC}$$

 $AC = Tan \theta \times BC \checkmark$

OR

 $=\frac{10}{\mathrm{Tan30^{\circ}}} \checkmark$

=17,32mm ✓

=17,32mm ✓

=Tan60° × 10 ✓

$$m = W - [(2(AC) + 2(R))] \checkmark$$

= 193,74 - [2(17,32) + 2(10)] \sqrt{
= 193,74 - (34,64 + 20)
= 139,10 mm \sqrt{
OR}
$$m = W - 2(AC + R) \sqrt{= 193,74 - 2(17,32 + 10) \sqrt{= 193,74 - (34,64 + 20)}= 139,10 mm \sqrt{OR}
$$m = W - 2(AC) - 2(R) \sqrt{= 193,74 - 2(17,32) - 2(10) \sqrt{= 193,74 - 34,64 - 20}= 139,10 mm \sqrt{= 130,10 mm \sqrt{ = 130,10 m$$$$

(6)

6.3 Milling of spur gear: 6.3.1 Indexing:

Indexing
$$=$$
 $\frac{40}{N} = \frac{40}{89}$
 $= \frac{40}{A} = \frac{40}{90} \checkmark$
 $= \frac{4}{9} \times \frac{6}{6}$
 $= \frac{24}{54} \checkmark$
 $=$ Indexing: 0 full turns and 24 holes on a 54 - hole circle (3)

6.3.2 Change gears:

$\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$		Driver A-N 40
$\frac{\mathrm{Dr}}{\mathrm{Dn}} = (90 - 89) \times \frac{40}{90} \checkmark$		$\frac{Driven}{Driven} = \frac{Arra}{A} \times \frac{10}{1}$
$= 1 \times \frac{40}{90}$		$=\frac{90-89}{90}\times\frac{40}{1}\checkmark$
$=\frac{40}{22}$	OR	$=\frac{1}{90}\times\frac{40}{1}$
90 ·		$=\frac{40}{90}$ \checkmark
-9 4 8		$=\frac{4}{9}\times\frac{8}{8}\checkmark$
$=\frac{1}{9}\times\frac{3}{8}\checkmark$		$\frac{Dr}{Dn} = \frac{32}{72} \checkmark$
$\frac{\mathrm{Dr}}{\mathrm{Dn}} = \frac{32}{72} \checkmark$		

(5)

6.4 **Balancing constraints/disadvantages:**

- Requires specialised machinery. ✓
- Difficult to ascertain the exact point of unbalance. \checkmark
- Requires accurate removal or adding of material (weight) to the object. ✓
- Can lead to interference with parts of the machine when weights are added to parts. ✓

(Any 2 x 1) (2) [28]

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	Instrument to measure indentation: Microscope ✓	(1)
7.2	 Brinell hardness number: Calculations ✓ The use of a Brinell hardness table ✓ 	(2)
7.3	Function of moment tester: To determine the reactions on either side of a simply loaded beam. ✓	(1)
7.4	Principal of tensile tester: The tensile tester is a destructive ✓ tester that subjects a piece of material to an increasing axial load ✓ while measuring the corresponding elongation of the material.✓	(3)
7.5	Depth and screw-thread micrometer: The scale on the depth micrometer's barrel reads in the opposite direction compared to the screw thread micrometer. ✓	(1)
7.6	 Hardness assessment: Resistance to penetration / Hardness tests ✓ Sound test ✓ Elastic hardness / Bending test / Tensile test ✓ Resistance to abrasion / File test / Spark test / Machining test ✓ (Any 3 x 1) 	(3)
7.7	Micrometer measurement:	
	5,94 + 50 = 55,94 mm	(2) [13]

QUESTION 8: FORCES (SPECIFIC)

8.1 **Forces:**

8.1.1 Horizontal component:

$$\Sigma HC = 45 cos0^{\circ} + 75 cos30^{\circ} - 15 cos75^{\circ} - 120 cos270^{\circ}$$

$$\sum HC = 45 + 64,95 - 3,88 - 0$$

∑HC = 106,07 N ✓

(4)

8.1.2 Vertical component:

 $\sum VC = 45 sin0^\circ + 75 sin30^\circ + 15 sin75^\circ - 120 sin270^\circ$

$$\sum VC = 0 + 37,5 + 14,49 - 120$$

 \sum VC = -68,01 N \checkmark

(4)

Force	θ	8.1.1 ∑HC/x = F	cosθ	8.1.2 ∑VC/y =	Fsinθ
45N	0°	$HC = 45 cos0^{\circ}$	45N ✓	VC = 45sin0°	0N
75N	30°	HC = 75cos30°	64,95N ✓	VC = 75sin30°	37,5N ✓
15N	105°	HC = 15cos105°	-3,88N ✓	VC = 15sin105°	14,49N ✓
120N	270°	HC = 120cos270°	0N	VC = 120sin270°	-120N ✓
		Total	106,07N ✓		-68,01N ✓

OR

8.1.3 **Resultant:**

$$R^{2} = VC^{2} + HC^{2}$$

$$R = \sqrt{(-68,01)^{2} + (106,07)^{2}} \checkmark$$

$$R = \sqrt{15876,21}$$

$$R = 126,00 \text{ N } \checkmark$$
(2)

8.1.4 Angle and direction of resultant:
Angle:
$$\tan \theta = \frac{VC}{VC}$$

$$\theta = \tan^{-1} \left(\frac{-68,01}{106,07} \right) \checkmark$$

$$\theta = \tan^{-1} \left(0,64 \right)$$

$$\theta = 32,67^{\circ} \checkmark$$

$$\theta = 32,67^{\circ} \checkmark$$

Direction: R=126,00N 32,67° / 32°40' South of East ✓

OR

Angle:

Direction:

R=126,00N 57,33° / 57°20' East of South ✓

(4)

8.2 **Reaction in supports A and B:**

Reaction in support A: Take moments about B:

$$\sum LHM = \sum RHM$$

$$(55 \times 7) = (A \times 7) + (160 \times 1,5)$$

$$385 = 7A + 240$$

$$A = \frac{145}{7} \checkmark$$

$$A = 20,71 \text{ N} \checkmark$$

Reaction in support B: Take moments about A:

$$\sum LHM = \sum RHM$$

$$(B \times 7) = (55 \times 0) + (160 \times 8,5)$$

$$7B = 0 + 1360$$

$$B = \frac{1360}{7} \checkmark$$

$$B = 194,29 \text{ N} \checkmark$$

(9)

8.3 **Stress and strain:**

8.3.1 **Maximum load:**

$$A = \frac{\pi D^2}{4}$$

= $\frac{\pi 0.02^2}{4}$ \checkmark
= 3,14159265 × 10⁻⁴m² \checkmark OR 3,14 × 10⁻⁴m² \checkmark

$$\sigma = \frac{F}{A}$$

$$F = A \times \sigma \checkmark$$

$$F = 3,14159265 \times 10^{-4} \times 640 \times 10^{6}$$

$$F = 201061,93 N$$

$$F = 201,06 \text{ kN} \checkmark \text{ OR } 200,96 \text{ kN} \checkmark$$
(6)

8.3.2 Safe working stress:

$$SF = \frac{MS}{SS}$$

$$SS = \frac{MS}{SF} \checkmark$$

$$SS = \frac{640 \times 10^{6} \checkmark}{3 \checkmark}$$

$$SS = 2133333333 \text{ Pa}$$

$$SS = 213,33 \text{ MPa} \checkmark$$
(4)
[33]

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1	 Preventative maintenance: Subgroups of preventative maintenance: Planned or scheduled maintenance ✓ Conditional-based maintenance ✓ 	(2)
9.2	 Advantages of belt drives over gear drives: Produce less noise than gear drives. ✓ Produce less vibration than gear drives. ✓ More cost effective. ✓ Belt drives will slip under a sudden load /over load to protect the drive. ✓ Do not need lubrication like gear drives. ✓ Belt drives do not require parallel shafts. ✓ Belts can be used over long distances. ✓ 	(3)
9.3	Belt drives: V-pulley ✓ Wedge pulley ✓ Flat pulley ✓ Round belt ✓ Timing/Toothed belt ✓ Multi-groove belt ✓ 	(3)
9.4	Non-stick material: Teflon ✓	(1)
9.5	Uses: Polyvinyl chloride (PVC): 9.5.1 Trays for food and toiletries ✓ Clear bottles ✓ Blister packaging ✓ Drain and sewerage pipes ✓ Electrical pipes ✓ Drip bags ✓ Cooking bottles ✓ Vinegar bottles ✓ Credit cards ✓ Shoe soles ✓ Floor tiles ✓ Wallpaper ✓ Outdoor furniture ✓ Disposable cutlery ✓	

(Any 2 x 1) (2)

9.5.2 Bakelite:

- Electrical insulators ✓
- Kitchenware ✓
- Jewellery ✓
- Toys ✓
- Distributor rotors ✓
- Disc brake cylinders ✓
- Sauce pan handles ✓
- Electrical switches ✓
- Electrical parts ✓
- Aircraft components ✓
- Bearings ✓
- Clutch linings ✓
- Brake linings ✓
- Laminated materials ✓
- Computer motherboards ✓

9.5.3 Fibre Glass

- Surface covering ✓
- Woven cloth ✓
- Pillow stuffing ✓
- Reinforced plastics ✓
- Boats ✓
- Motor vehicle bodies ✓
- Roof sheeting ✓
- Petrol tanks √
- Swimming pools ✓
- Furniture ✓
- Fruit and salad bowls ✓
- Ornaments ✓
- Sporting equipment ✓
- Jigs forms ✓

(Any 2 x 1) (2)

(Any 2 x 1)

(2)

9.6 **Thermo-hardened or thermoplastic:**

9.6.1	Carbon fibre: Thermo-hardened / Thermosetting ✓	(1)
9.6.2	Nylon: Thermoplastic ✓	(1)
9.6.3	Bakelite: Thermo-hardened / Thermosetting ✓	(1) [18]

(3)

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Square screw thread:

10.2 **Square Thread:**

10.2.1 **Pitch diameter:**

Pitch =
$$\frac{\text{Lead}}{\text{Number of starts}}$$

= $\frac{25}{2} \checkmark$
= 12,50 mm \checkmark

$$PD = OD - \frac{P}{2}$$
$$= 70 - \frac{12,50}{2} \checkmark$$
$$PD = 63,75 \text{ mm } \checkmark$$
(4)

10.2.2 Helix angle of the thread:

$$Tan\theta = \frac{Lead}{\pi \times D_{\rho}}$$

$$Tan\theta = \frac{25}{\pi \times 63,75} \checkmark$$

$$\theta = tan^{-1} (0,124827406) \checkmark$$

$$= 7,12^{\circ} \text{ OR } 7^{\circ}7' \checkmark \qquad (4)$$

10.2.3 Leading angle:

Leading angle = 90°- (Helix angle + Clearance angle)
= 90°- (7,12° + 3°)
$$\checkmark$$

= 79,88° **OR** 79°53' \checkmark (2)

10.2.4 **Following angle:**

Following angle = 90° + (Helix angle – Clearance angle)
= 90° + (7,12° – 3°)
$$\checkmark$$

= 94,12° **OR** 94°7' \checkmark (2)

10.3 **ISO V-screw thread:**

- A. Helix angle \checkmark
- B. Pitch / Lead ✓
- C. Root ✓

(3) **[18]**

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic systems :

11.1.1 Area of Ram:

$$A(Ram) = \frac{\pi D^2}{4}$$

$$\mathsf{A} = \frac{\pi (0,110)^2}{4} \checkmark$$

$$A = 0,0095 \text{ m}^2 \checkmark \text{OR} \quad 9,50 \times 10^{-3} \text{ m}^2 \checkmark$$
 (2)

11.1.2 Applied force on plunger: $p = \frac{F}{A}$ $\frac{f}{a} = \frac{F}{A} \checkmark$ $f = \frac{F \times a}{A}$ $f = \frac{350 \times 0,005}{0,0095} \checkmark$ $f = 184,21 \text{ N }\checkmark$

(3)

11.1.3 **Displacement h:**

$$V_{Plunger} = V_{Ram}$$

$$a × h = A × H$$

$$h = \frac{A × H}{a} \checkmark$$

$$h = \frac{0,0095 \times 0,025}{0,005} \checkmark$$

$$h = 0,0475 m$$

$$h = 47,5 mm \checkmark$$

11.2 **Pressure gauge:**

- To adjust pressure control valves. ✓
- Determining the pressure being exerted. ✓
- For safety. ✓
- Indicates if leakages are present in the system. ✓

(Any 2 x 1) (2)

(3)

11.3 Advantages of pneumatics:

- Pneumatic tools are very environmentally friendly. / Clean operation ✓
- Last longer. ✓
- More robust. ✓
- More compact. ✓
- Easily maintained. ✓
- Easily installed.✓
- Cost effective. ✓
- Safe to use. ✓
- High power-to-weight ratio. ✓
- Simple control. ✓
- Quick response. ✓
- Versatile. ✓

(Any 1 x 1) (1)

Copyright reserved

11.4 Belt drive:

11.4.1 **The rotational frequency in r/sec:**

$$N_{DR} \times D_{DR} = N_{DN} \times D_{DN}$$

$$N_{DN} = \frac{N_{DR} \times D_{DR}}{D_{DN}} \quad \checkmark$$

$$\mathsf{N}_{\mathsf{DN}} = \frac{25 \times 75}{350} \checkmark$$

$$N_{DN} = 5,36 \, r \, / \, sec \, \checkmark$$
 (4)

11.4.2 Belt speed:

Belt Speed(V) =
$$\pi D_{DR} \times N_{DR}$$

= $\pi \times 0.075 \times 25 \checkmark$ OR
= 5.89 m/s \checkmark
Belt Speed(V) = $\pi D_{DR} \times N_{DR}$
= $\pi \times 0.350 \times 5.36 \checkmark$
= 5.89 m/s \checkmark (2)

11.5 **V-Belt:**

The slippage of the v-belt. ✓

11.6 **Gear drives:** 11.6.1 **Th**

The rotational frequency: $\frac{N_{input}}{N_{output}} = \frac{Product of teeth on driven gears}{Product of teeth on driver gears}$ $\frac{N_A}{N_D} = \frac{T_B \times T_D}{T_A \times T_C}$ $\frac{95}{N_D} = \frac{55 \times 50}{30 \times 25} \checkmark$ $N_D = \frac{30 \times 25 \times 95}{55 \times 50} \checkmark$ $N_D = \frac{71250}{2750}$ $N_D = 25,91 \text{ r/min } \checkmark$

(4)

(1)

11.6.2

Power transmitted: Power (P) = $\frac{2\pi N T}{22}$

$$\mathsf{P} = \frac{2 \times \pi \times 95 \times 120}{60} \checkmark$$

$$P = 1193,81 \checkmark Watt(W) \checkmark$$

$$OR$$

$$P = 1,19 \checkmark Kilowatt(kW) \checkmark$$
(3)

11.7 Length of spanner:

Torque(T) Force Radius

Radius =
$$\frac{T}{F}$$
 \checkmark

Radius = $\frac{135}{300}$ \checkmark

Radius = 0,45 m \checkmark OR Radius = 450 mm \checkmark

TOTAL: 200