

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 22 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	A✓	(1)
1.6	B√	(1)

QUESTION 2: SAFETY (GENERIC)

2.1 **Examination checks:**

- Severe bleeding ✓
 - Internal bleeding ✓
 - Head injuries ✓
 - Neck injuries ✓
 - Fractures ✓
 - Vital signs ✓
 - Physical abnormalities ✓

(Any 2 x 1) (2)

(Any 2 x 1)

(Any 2 x 1)

(2)

(2)

2.2 Safety devices on the power-driven guillotine:

- Finger protectors / Fixed guards / Blade guard \checkmark
- Rear view mirrors ✓
- Rear light curtains ✓
- Automatic sweep-away ✓
- Revolving warning lights ✓
- Two-hand / dual control device ✓
- Additional emergency buttons ✓
- Self-adjusting guards ✓
- Covered footswitch ✓

2.3 **Grinding wheel:**

- The wheel should be rated above the speed of the motor. \checkmark
- Check for cracks on the grinding wheel. ✓
- Check for chips on the grinding wheel. ✓
- Check that the arbor hole is the correct size. ✓
- Must not be contaminated by oil/fluids or grease. ✓
- Correct size of the wheel. \checkmark
- Correct type of wheel for the material. ✓

2.4 Gas welding equipment – safety devices:

- Valve guard ✓
- Flash back arrestor ✓
- Pressure regulator ✓
- C-clamps on hoses/Parallel hose clips ✓
- Acetylene spindle key must always be in place. ✓
- Cylinder valves. ✓

(Any 2 x 1) (2)

2.5 Advantages of process layout of machines are:

- High machine utilisation. ✓
- Better supervision. ✓
- Less interruption in the flow of work. \checkmark
- Lower equipment costs. ✓
- Better control of total manufacturing costs. ✓
- Greater flexibility. ✓

(Any 2 x 1) (2) [10]

QUESTION 3: MATERIALS (GENERIC)

3.1 **Colour code of metal:**

- To identify the type of metal. ✓
- To identify carbon content especially after the metal was stored. \checkmark
- To identify the profile/size of the metal. ✓

(Any 1 x 1) (1)

3.2 **Tests to determine properties of steel:**

3.2.1 **Sound test:**

- Hardness ✓
- Softness ✓

(Any 1 x 1) (1)

3.2.2 **Bending test:**

- Ductility ✓
- Bend strength ✓
- Fracture strength ✓
- Resistance to fracture
- Brittleness ✓
- Elasticity ✓
- Plasticity ✓
- Flexibility ✓

(Any 1 x 1) (1)

3.2.3 Machining test:

- Hardness ✓
- Strength ✓

3.3 Reasons metal soaked during heat treatment:

- To ensure uniform heat distribution \checkmark throughout the metal. \checkmark
- To achieve a uniform grain structure ✓ after cooling the metal. ✓

(Any 1 x 2) (2)

(Any 1 x 1)

(Any 2 x 1)

3.4 **Case hardening:**

- Carburising ✓
- Nitriding ✓
- Cyaniding ✓

3.5 **Annealing process:**

Heating the steel slightly above AC₃, (upper critical temperature) \checkmark soaking it for a required time/period \checkmark and then slow cooling \checkmark back to room temperature.

(3)

(2)

(1)

3.6 **Rapid quenching mediums:**

- Brine/Salt water ✓
- Water ✓
- Nitrogen ✓
- Oil ✓

(Any 2 x 1) (2)

3.7 Heat treatment process:

Tempering \checkmark

(1) **[14]**

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	A ✓	(1)
4.2	B✓	(1)
4.3	C✓	(1)
4.4	D✓	(1)
4.5	A✓	(1)
4.6	B✓	(1)
4.7	A✓	(1)
4.8	A✓	(1)
4.9	D✓	(1)
4.10	B✓	(1)
4.11	A✓	(1)
4.12	A✓	(1)
4.13	D✓	(1)
4.14	B✓	(1) [14]

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

5.1 **Brass ring calculations:**

5.1.1 Mean
$$\emptyset$$
 = Inside \emptyset + Plate thickness
= 870 + 30 \checkmark
= 900 mm \checkmark (2)

5.1.2 Mean circumference =
$$\pi \times \text{Mean } \emptyset$$

= $\pi \times 900 \checkmark$
= $2827,43 \checkmark$
= $2827 \text{ mm} \checkmark$ (3)

5.2 **Fusion weld symbols: (Symbols can be presented in any direction)**

5.2.1	Square butt		(2)	
5.2.2	V groove	V vv	(2)	
5.2.3	U butt	Y ···	(2)	
5.2.4	J butt	Υ 🗸	(2)	
5.2.5	Flare-V	ノヘー	(2)	
Weld symbol:				
5.3.1	T-joint ✓		(1)	

5.3.2 Labels:

- A Weld all around \checkmark
- B Site weld \checkmark
- C Fillet weld \checkmark
- D Tail 🗸
- E Pitch of weld \checkmark
- F Length of weld \checkmark
- G Size of weld \checkmark

5.3

(7) **[23]**

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 **Types of metal:**

- Carbon steel/Steel ✓
- Aluminum ✓
- Brass ✓
- Copper ✓
- Cast iron ✓
- Cast steel ✓
- Stainless steel ✓
- Tool steel ✓

(Any 3 x 1) (3)

6.2 **Bench grinder:**

- Polishing \checkmark
- Sharpening of cutting tools and drill bits. \checkmark
- To remove rough edges. ✓
- To remove excess material. ✓
- Buffing ✓
- Removing rust from metal. ✓

(Any 3 x 1) (3)

6.3 Arc welding:

6.3.1 Labels of arc welding set up:

- A Arc welding machine / Power source / Inverter ✓
- B Electrode / Welding rod ✓
- C Electrode holder / Welding rod holder√
- D Positive- / negative cable / Electrode cable√
- E Earth cable / negative cable / positive cable \checkmark (5)

6.3.2 Advantages of MIGS/MAGS welding:

- Less distortion. ✓
- MIG/MAGS welding quality is better. ✓
- Fewer stops and starts. ✓
- MIG/MAGS works with many metals or alloys. ✓
- Greater deposition rates. ✓
- Less post welding cleaning (no slag to chip off weld). ✓
- Better weld pool visibility. ✓
- No stub end losses or wasted man hours caused by changing electrodes. ✓
- Low skill required to operate MIG/MAGS welding gun. ✓
- Can weld in any position. ✓
- The process is easily automated. ✓
- No fluxes required in most cases. \checkmark

(Any 1 x 1) (1)

6.4 **Drill size:**

Drill size = Outside \emptyset - Pitch $\checkmark \checkmark$ Drill size = 10 -1,5 = 8,5 mm \checkmark

6.5 **Rolling machines:**

- Off-set pinch rolls \checkmark
- Horizontal pyramid rolls ✓
- Vertical rolls ✓

(3) **[18]**

(3)

QUESTION 7: FORCES (SPECIFIC)

7.1 Beams:

$$RR \times 7 = (4 \times 1,5) + (5 \times 3,5) + (3 \times 5,5)$$
$$= 6 + 17,5 + 16,5$$
$$= 40$$
$$\therefore RR = \frac{40Nm}{7m}$$
$$RR = 5,71N \checkmark$$

Reaction RL: Take moment about (RR):

$$RL \times 7 = (3 \times 1,5) + (5 \times 3,5) + (4 \times 5,5)$$

= 4,5 + 17,5 + 22
= 44
$$\therefore RL = \frac{44Nm}{7m}$$

RL = 6,29N \checkmark (8)

7.1.2 **Bending moments:**

$$BM_{A} = (6,29 \text{ N x } 1,5 \text{ m}) - (4 \text{ N x } 0\text{m})^{\checkmark} = 9,44 \text{ Nm } \checkmark$$

$$BM_{B} = (6,29 \text{ N x } 3,5 \text{ m}) - (4 \text{ N x } 2 \text{ m}) - (5 \text{ N x } 0 \text{ m}) \checkmark$$

$$= 14,02 \text{ Nm } \checkmark$$

$$BM_{C} = (6,29 \text{ N x } 5,5 \text{ m}) - (4 \text{ N x } 4 \text{ m}) - (5 \text{ N x } 2\text{m}) - (3 \text{ N x } 0 \text{ m})^{\checkmark}$$

$$= 8,60 \text{ Nm } \checkmark$$
(6)

7.1.3 Bending moment diagram. Scale: 1 m = 10 mm and 1 Nm = 10 mm.

Note to marker: Marker must redraw the bending moment diagram according to the scales for marking purposes.

(6)

7.2 **Stress and Strain:**

7.2.1 Area of the bar:

$$\sigma = \frac{F}{A}$$

$$A = \frac{F}{\sigma} \checkmark$$

$$= \frac{65 \times 10^{3}}{5 \times 10^{6}} \checkmark$$

$$= 13 \times 10^{-3} \text{ m}^{2} \checkmark \qquad (3)$$

7.2.2 **Diameter of a bar:**

$$A = \frac{\pi D^2}{4}$$

$$D = \sqrt{\frac{4A}{\pi}} \checkmark$$

$$= \sqrt{\frac{4(13 \times 10^{-3})}{\pi}} \checkmark$$

$$= 0,128655019 \text{ m}$$

$$= 128,66 \text{ mm} \checkmark \qquad (3)$$

7.2.3 **Strain:**

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon = \frac{5 \times 10^{6}}{75 \times 10^{9}} \checkmark$$

$$= 6.67 \times 10^{-5} \checkmark \qquad (2)$$

7.2.4 Change in length:

$$\epsilon = \frac{\Delta L}{OL}$$

$$\Delta L = \epsilon \times OL \checkmark$$

$$= (6,67 \times 10^{-5}) \times 250 \text{ mm} \checkmark$$

$$= 0,02 \text{ mm} \checkmark$$
(3)

7.3 Simple frame:

7.3.1 **Space diagram:**

7. 3.2 Vector diagram: Scale 1 mm = 2 N

NOTE: Draw to scale on transparency for marking purpose.

(5)

(3)

7.3.3 Magnitude and nature of force:

Member	Force (N)	Nature
AD	220 (216-224) 🗸	Strut ✓
BD	220 (216-224) 🗸	Strut ✓
CD	190 (186-194) 🗸	Tie ✓

NOTE TO A MARKER:

ALLOW FOR A DEVIATION OF 2 mm (UP OR DOWNWARDS). (6)

[45]

QUESTION 8: JOINING METHODS (INSPECTION OF WELD) (SPECIFIC)

8.1	Weld defects:			
	8.1.1	Slag inclusion ✓		(1)
	8.1.2	Incomplete penetration ✓		(1)
8.2	Inspec • Toc • Toc	tion of welds: heck for weld quality. ✓ heck for specification. ✓		(2)
8.3	Welding defects:			
	8.3.1	 Nick break test: Lack of fusion ✓ Internal quality ✓ Porosity ✓ Slag inclusion ✓ Oxidized / burnt metal ✓ Incomplete penetration ✓ Guided bend test: Quality of face of the weld joint. ✓ Quality of root of the weld joint. ✓ Degree of penetration. ✓ 	(Any 2 x 1) (Any 2 x 1)	(2)
8.4	Non-destructive test: It is a method of testing a welded joint without destroying \checkmark the finished product. \checkmark		(2)	
8.5	 Transverse cracks: Preheat the base metal. ✓ Using lower strength consumables. ✓ Slow cooling after weld. ✓ 		(3)	
8.6	Crater o • It is c • Metal	aused by lack of filler at the end of the weld. ✓ of not good weldability ✓	(Any 1 x 1)	(1)

8.7 Advantages of liquid dye penetrant test:

- Low cost. ✓
- Easy to apply. ✓
- Easy to interpret. ✓
- Minimal training required. \checkmark
- Good for ferrous metals. ✓
- Good for non-ferrous metals. \checkmark
- Can be used in complex shapes/areas. \checkmark
- It is non-destructive. ✓

(Any 3 x 1) (3)

8.8 Ultrasonic test

- Clean the area on the metal to be tested. \checkmark
- Calibrate the equipment before commencement of testing. ✓
- Apply gel, oil or water to the area on the metal to be tested. \checkmark
- Move probe left-to-right along the area on the metal. ✓
- Soundwaves is sent and received by the equipment. \checkmark
- Interpret the flaws detected on oscilloscope. ✓

(6) **[23]**

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1 **Factors having effect on shrinkage:**

- Electrode type. ✓
- Electrode size. ✓
- Welding current. ✓
- Flame size. ✓
- Welding speed. ✓
- Rate of cooling during welding. ✓
- Rate of cooling after welding. ✓
- Workpiece size / thickness. ✓

(Any 3 x 1) (3)

9.2 **Peening:**

- A way to counteract ✓ the shrinkage forces of a weld bead as it cools. ✓
- It is a technique used in welding \checkmark to help strengthen the joint. \checkmark
- It is the hammering ✓ of the weld immediately after welding ✓ is done.
 - (Any 1 x 2) (2)

(2)

9.3 **Types of strongbacks:**

- Clips ✓
- Yokes ✓

9.4 Effect of hot working on steel:

- In hot working, deformation and recrystallization occur simultaneously so that the rate of softening is greater than work hardening. ✓
- The important factor in hot-working is the finishing temperature. ✓
- Hot-working should be finished at a temperature just above the recrystallization temperature, so that a fine grain structure is obtained. ✓
- If the finishing temperature is too high, grain growth will occur while the metal is cooling above the recrystallization temperature. ✓

(Any 3 x 1) (3)

9.5 **Causes of residual stress in welds:**

- Heat present in the weld. \checkmark
- Quality of parent metal. ✓
- Quality of filler rod. ✓
- Quality of electrode. ✓
- Shape and size of weld. ✓
- Number of successive weld runs. ✓
- Comparative weight of weld and parent metal. ✓
- Type of welding joint used. ✓
- Welding method used to mitigate stress and distortion. \checkmark
- Type of structure of neighbouring joints. ✓
- Freeness of joint to be able to expand. ✓
- Freeness of joint to be able to contract. ✓
- Rate of cooling. ✓

9.6 **Types of distortions:**

- 9.6.1 Longitudinal distortion. \checkmark (1)
- 9.6.2 Angular distortion. \checkmark (1)

9.7 Effects of cooling rates:

- Distortion \checkmark
- Mechanical properties ✓
- Internal stresses ✓
- Potential cracking \checkmark

(Any 3 x 1) (3)

(Any 3 x 1)

(3)

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 **Lubrication:**

It is the process or technique of using a lubricant \checkmark between two surfaces. \checkmark (2)

10.2 **Overloading the machine:**

10.2.1 **Punch and shearing machine:**

- Dulling or breaking blades/punches. ✓
- Putting strain on the motor. ✓
- Putting strain on the drive mechanism.
- Machine will stop working. ✓
- Machine will cut out. ✓

(Any 1 x 1) (1)

10.2.2 **Guillotine machine:**

- Damage to the blade. ✓
- Damage to the hydraulic system. ✓
- Damage to the electric motor. ✓
- Machine will stop working. ✓
- Machine will cut out. ✓

(Any 1 x 1) (1)

10.3 **Tagging plates:**

It has multiple holes so that more than one technician \checkmark can lock out the machine simultaneously. \checkmark (2)

10.4 **Maintenance:**

- Promote cost saving. ✓
- Improves safety. ✓
- Increases equipment efficiency. ✓
- Fewer equipment failure. ✓
- Improves reliability of equipment. ✓

(Any 1 x 1) (1)

10.5 **Friction:**

- By reducing drill speed. ✓
- By reducing feed speed. ✓
- By applying lubricant / (cutting fluid).
- Use sharp drill bit. ✓
- Use correct drill bit. ✓

QUESTION 11: TERMINOLOGY (DEVELOPMENT) (SPECIFIC)

11.1 Square to square Hopper (off centre):

11.1.1 **A-2:**

$$A - 2 = \sqrt{180^2 + 350^2 + 400^2}$$

$$= \sqrt{32400 + 122500 + 160000}$$

$$= \sqrt{314900}$$

$$= 561,16 \text{ mm }\checkmark$$
(4)

$$B - 3 = \sqrt{410^{2} + 150^{2} + 400^{2}}$$

= $\sqrt{168100 + 22500 + 160000}$
= $\sqrt{350600}$
= 592,11 mm \checkmark (4)

11.1.3 **C-4:**

$$C - 4 = \sqrt{380^{2} + 90^{2} + 400^{2}}$$

= $\sqrt{144400 + 8100 + 160000}$
= $\sqrt{312500}$
= 559,02 mm \checkmark (4)

11.2 Square to round transformer:

11.2.1 **True length 5–6:**

$$5-6 = \frac{\pi \times D}{12} \checkmark$$
$$= \frac{\pi \times 500}{12}$$
$$= 130,90 \text{ mm} \checkmark$$
(2)

11.2.2 **True length 3–6:**

11.2.3 **True length B-6:**

$$B - 6 = \sqrt{300^{2} + 50^{2} + 400^{2}}$$

$$= \sqrt{90000 + 2500 + 160000}$$

$$= \sqrt{252500}$$

$$= 502,49 \text{ mm } \checkmark$$
(4)
[21]

TOTAL: 200