

DIRECTORATE SENIOR CURRICULUM MANAGEMENT (SEN-FET) HOME SCHOOLING SELF-STUDY WORKSHEET ANSWER SHEET

SUBJECT	AUTOMOTIVE	GRADE	10	DATE	JUNE 2020
TOPIC	FORCES	TERM 1 REVISION	(Please tick)	TERM 2 CONTENT	(√)

QUESTION 1

1 (a) Define a force.

A force is an influence which changes or tends to change the state of rest or uniform motion of a body.

(b) With the aid of sketches, give the 3 types of forces as used in Automotive.

QUESTION 2

(a) Define a moment.

A moment of a force is the turning effect of a force.

(b) What is the unit of a moment?

The Unit of a Moment is Nm.

(c) State the principle of moments.

In order for a body to remain in a balanced state or equilibrium, the sum of Clockwise Moments should be equal to the Anti-Clockwise Moments.

QUESTION 3

(a) A moment is a turning effect and it depends on two things:

- i.
- ii.
- (b) Given the three scenarios representing a spanner in the table below, calculate the moment in each of the three scenarios and indicate the type of moment as either Clockwise or Anti-clockwise.

If given that:

Scenario 1, A force of 10N is applied at 30cm from the pivot.

Scenario 2, A force of 10N is applied at 15cm from the pivot.

Scenario 3, A force of 10N is applied at 60cm from the pivot

Table 1

SOLUTION TO QUESTION 3

- 3 (a) i. Force
 - ii. Distance
 - (b) 1. Moment = Force x Distance

= 10N x (30 ÷ 100) m

= 3 Nm

Clockwise moment

2. Moment = Force x Distance

= 10N x (15 ÷ 100) m

= 1.5 Nm

Clockwise moment

3. Moment = Force x Distance

= 6 Nm

Anti - clockwise moment

QUESTION 4

Determine both the Clockwise moment and Anti – clockwise moment given Figure 1 below. Comment on whether the body will remain in a balanced state.

SOLUTION TO FIGURE 1 ABOVE

Calculating the two moments: First, the Clockwise moment, M_c : $M_c = F \times d$

= 7.5 x 2 = 15 Nm

Second, the Anticlockwise moment, M_A : $M_A = F \ x \ d$

Since the moments are equal, then according to the Principle of Moments, the object must balance.

QUESTION 5

Find the value of F₂, if the lever in Figure 2 below has to be in a state of equilibrium.

SOLUTION TO FIGURE 2 ABOVE:

Given all of the values to calculate the anticlockwise moment, then:

Clockwise Moment (M_C) = Anti-clockwise Moment (M_A) M_A = F x d

= 4 x 4 = 16 Nm

Now, for the clockwise moment there is a missing force value, F_2 , thus: M_c = $F_2 \times d$

Now put in the value of M_c , which is equal to M_A , for the object to balance, so its clockwise moment equals its anticlockwise moment. Hence:

Since the object balances, the total clockwise moment equals the total anticlockwise moment, so M_c = 16 Nm.

 $16 = F_2 \times 2$ $F_2 = 16 / 2$ = 8 N

(Do a quick check; $4 \times 4 = 16$ Nm on the left of the pivot. And then $2 \times 8 = 16$ Nm on the right of the pivot.)