

Province of the

EASTERN CAPE

EDUCATION

DIRECTORATE SENIOR CURRICULUM MANAGEMENT (SEN-FET)
 HOME SCHOOLING SELF-STUDY WORKSHEET ANSWER SHEET

SUBJECT	AUTOMOTIVE	GRADE	10	DATE	JUNE 2020
TOPIC	FORCES	TERM 1 REVISION	(Please tick)	TERM 2 CONTENT	(V)

QUESTION 1

1 (a) Define a force.
A force is an influence which changes or tends to change the state of rest or uniform motion of a body.
(b) With the aid of sketches, give the 3 types of forces as used in Automotive.
(i) Tensile force

(ii) Compressive force

(iii) Shear force

QUESTION 2

(a) Define a moment.

A moment of a force is the turning effect of a force.
(b) What is the unit of a moment?

The Unit of a Moment is Nm .
(c) State the principle of moments.

In order for a body to remain in a balanced state or equilibrium, the sum of Clockwise Moments should be equal to the Anti-Clockwise Moments.

QUESTION 3

(a) A moment is a turning effect and it depends on two things:
i.
ii.
(b) Given the three scenarios representing a spanner in the table below, calculate the moment in each of the three scenarios and indicate the type of moment as either Clockwise or Anti-clockwise.
If given that:
Scenario 1, A force of 10 N is applied at 30 cm from the pivot.
Scenario 2, A force of 10 N is applied at 15 cm from the pivot.
Scenario 3, A force of 10 N is applied at 60 cm from the pivot

Table 1
SOLUTION TO QUESTION 3
3 (a) i. Force
ii. Distance
(b) 1. Moment $=$ Force \times Distance

$$
\begin{aligned}
& =10 \mathrm{~N} \times(30 \div 100) \mathrm{m} \\
& =3 \mathrm{Nm}
\end{aligned}
$$

Clockwise moment

2. Moment $=$ Force \times Distance

$$
=10 \mathrm{~N} \times(15 \div 100) \mathrm{m}
$$

$$
=1.5 \mathrm{Nm}
$$

Clockwise moment

3. Moment $=$ Force \times Distance

$$
\begin{aligned}
& =10 \mathrm{~N} \times(60 \div 100) \mathrm{m} \\
& =6 \mathrm{Nm}
\end{aligned}
$$

Anti - clockwise moment

QUESTION 4

Determine both the Clockwise moment and Anti - clockwise moment given Figure 1 below. Comment on whether the body will remain in a balanced state.

Figure 1

SOLUTION TO FIGURE 1 ABOVE

Calculating the two moments:
First, the Clockwise moment, Mc_{c} :
$\mathrm{M}_{\mathrm{c}}=\mathrm{Fxd}$

$$
\begin{aligned}
& =7.5 \times 2 \\
& =15 \mathrm{Nm}
\end{aligned}
$$

Second, the Anticlockwise moment, MA:
$M_{A}=F x d$

$$
\begin{aligned}
& =5 \times 3 \\
& =15 \mathrm{Nm}
\end{aligned}
$$

Since the moments are equal, then according to the Principle of Moments, the object must balance.

QUESTION 5

Find the value of F_{2}, if the lever in Figure 2 below has to be in a state of equilibrium.

Figure 2

SOLUTION TO FIGURE 2 ABOVE:

Given all of the values to calculate the anticlockwise moment, then:
Clockwise Moment $\left(\mathrm{Mc}_{\mathrm{c}}\right)=$ Anti-clockwise Moment $\left(\mathrm{M}_{\mathrm{A}}\right)$
$\mathrm{M}_{\mathrm{A}}=\mathrm{Fxd}$

$$
\begin{aligned}
& =4 \times 4 \\
& =16 \mathrm{Nm}
\end{aligned}
$$

Now, for the clockwise moment there is a missing force value, F_{2}, thus:
$\mathrm{M}_{\mathrm{c}}=\mathrm{F}_{2} \times \mathrm{d}$
Now put in the value of M_{c}, which is equal to M_{A}, for the object to balance, so its clockwise moment equals its anticlockwise moment. Hence:

Since the object balances, the total clockwise moment equals the total anticlockwise moment, so $\mathrm{M}_{\mathrm{c}}=16 \mathrm{Nm}$.

$$
\begin{aligned}
16 & =F_{2} \times 2 \\
F_{2} & =16 / 2 \\
& =8 \mathrm{~N}
\end{aligned}
$$

(Do a quick check; $4 \times 4=16 \mathrm{Nm}$ on the left of the pivot. And then $2 \times 8=16 \mathrm{Nm}$ on the right of the pivot.)

