

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

AGRICULTURAL TECHNOLOGY

.....................

MARKING GUIDELINES

NOVEMBER 2023

MARKS: 200

These marking guidelines consist of 16 pages.

Please turn over

SECTION A

QUESTION 1

- 1.1 1.1.1 B√√
 - 1.1.2 A√√
 - 1.1.3 D√√
 - 1.1.4 B√√
 - 1.1.5 D√√
 - 1.1.6 C√√
 - 1.1.7 A√√
 - 1.1.8 D√√
 - 1.1.9 A√√
 - 1.1.10 B√√

1.2 1.2.1 differential ✓✓

- 1.2.2 helical√√
- 1.2.3 biological√√
- 1.2.4 perforated√√
- 1.2.5 electric arc√ ✓

1.3 1.3.1 D√√

- 1.3.2 F√√
- 1.3.3 G√√
- 1.3.4 E√√
- 1.3.5 C√√

(5 x 2) (10)

TOTAL SECTION A: 40

(10 x 2)

(5 x 2)

(20)

(10)

SECTION B

QUESTION 2: MATERIALS AND STRUCTURES

- 2.1 TWO types of water troughs. Water trough A is made from fibre glass and B from concrete.
 - 2.1.1 A synthetic material except fibre glass that can be used to manufacture a water trough.
- Plastic.✓ PVC water trough.✓ (1) Polypropylene.✓ (Any 1) 2.1.2 TWO reasons why A would be preferred above B. Lightweight.✓ Watertight.✓ • Easy repair.√ Easy to colour.✓ Easy to mould.√ • (2) Easy to drill and sand.✓ (Any 2) 2.1.3 The device that will be installed into the trough to allow water to flow into the trough when the water level drops. Ball valve.√ (1) 2.2 An example of a typical adhesive. 2.2.1 The meaning of load capacity of an adhesive. The adhesive should be able to withstand mass \checkmark and tension. \checkmark (2)2.2.2 Improving the adhesion properties of an adhesive. Apply a thin base coat if the surface is very porous. Apply only a thin layer of adhesive.✓ Apply adhesive to both surfaces. (2) Too thick layer of adhesive will result in a weak joint. (Any 2) 2.3 Different synthetic materials. 327 °C.√ 2.3.1 2.3.2 Melt.√ Non-stick coatings ✓, Valves ✓, Taps ✓, Tape. ✓ 2.3.3 (Any 1) (3)

2.4 TWO effects of nickel on stainless steel.

•	It improves the amount of toughness.✓
---	---------------------------------------

- It gives steel a fair amount of toughness at low temperatures. \checkmark •
- Nickel helps to increase the hardening ability of steel.
- Steel which is alloyed with chromium and nickel is resistant to corroding (2)agents (air, water, chemical acids and alkali). (Any 2)
- 2.5 A brass bush.
 - 2.5.1 TWO metals that are used to manufacture brass.
 - Copper.√ • (2)
 - Zinc.√
 - TWO permanent joining methods that incorporate heat used to join 2.5.2 brass.
 - Soldering.√ • (2)
 - Brazing.✓ •
 - 2.5.3 TWO benefits of brass alloy bush when it is compared to pure copper bush.
 - The alloy becomes harder than copper. \checkmark •
 - It is more easily casted than copper.✓ •
- 2.6 THREE reasons why a Vesconite bush is preferred to a ball bearing.
 - Easy to fit and remove.✓
 - Does not corrode.✓
 - Will not wear shafts & liners like traditional bearing materials.
 - Resistant to a wide range of chemicals.
 - Does not shrink or expand.✓
 - Does not wear.✓
 - Will not damage the shaft.✓ •
 - Easy and safe to machine. \checkmark
 - Low friction abilities.✓ •
 - Vesconite does not delaminate.✓ •
 - Vesconite remains hard.✓
- 2.7 An electrical fence.
 - 2.7.1 The depth to which the earth electrode must penetrate the soil when a high output energizer is used.

1m. √

(3)

(2)

(Any 3)

	2.7.2	A cost-effective method that can be used to protect the against corrosion.	he steel posts	
		 Galvanising.√ Paint.√ Powder coating.√ 	(Any 1)	(1)
	2.7.3	THREE causes of short circuits on an electrical fence		
		 Vegetation touching the fence.√ Faulty joints.√ Broken wires.√ Faulty insulators.√ 	(Any 3)	(3)
	2.7.4	Why copper is a suitable material to manufacture the in an electric fence.	earth spikes used	
		 Good conductor of electricity.√ Does not corrode.√ Durable.√ Readily available.√ 	(Any 3)	(3)
2.8		er needs to install an electrical fence with six strands eter of 300 meters.	of wire with a	
	Posts:	6 x R180.00	= R 1080.00√	

Posts:	6 x R180.00	= R 1080.00√	
Droppers:	100 x R13.00	= R 1300.00✓	
Wire:	(6 x 300m) x R1.50	= R 2700.00√	
Isolators:	$((6 \times 100) + (6 \times 2) + (4 \times 6 \times 2)) \times R5.00$	<u>= R 3300.00</u> ✓	
Total:		<u>= R 8380.00</u> √	(5)
			[35]

QUESTION 3: ENERGY

	3.1	Alternative fuels.
--	-----	--------------------

3.2

3.3

3.1.1	Starch,✓ sugar crops,✓ maize,✓ sorghum,✓ potatoes,✓ wheat,✓ sugarcane,✓ cornstalks,✓ fruit,✓ or vegetable waste.✓	(Any 1)	(1)
3.1.2	Methanol.✓		(1)
3.1.3	Waste products such as sewage, ✓ manure, ✓ earth gas, ✓ or landf	ills. √ (Any 1)	(1)
The co	onstruction of a wind turbine.		
3.2.1	Name of part A.		
	Generator.✓		(1)
3.2.2	Description of the function of part B.		
	 To ensure optimum torque output to the generator.√ To increase the rotation speed of the output shaft.√ 		(2)
3.2.3	The part that is installed on a wind turbine to measure wind speed.		
	Anemometer.✓		(1)
3.2.4	Description of the effect that the change of the pitch of the blades here wind turbine.	nas on	
	 Protects the wind turbine against strong winds.✓ More electricity can be generated from slower winds.✓ 		(2)
A sola	r system.		
3.3.1	FOUR aspects that have a negative influence on the efficient gene electricity by the solar panel system.	eration of	
	 Panels facing the wrong direction.√ Clouds obstructing the sun rays.√ Trees obstructing the sun rays.√ Dirt covering the panels.√ Broken panels/malfunction panels.√ 		

•

Too few solar panels.✓

(Any 4)

(4)

7 NSC – Marking Guidelines

- 3.3.2 Explanation to a farmer why a solar system is preferred.
 - No load shedding issues/no electricity interruptions.✓ •
 - No load reduction.✓ •
 - Green energy.✓ •
- THREE protective measures that can be installed to protect the solar 3.3.3 system against theft and vandalism.
- 3.4 Precautionary measure that should be taken to avoid overcooling of a geothermal energy plant's heat source.

Do not pump too much water into the hole.✓

Copyright reserved

No distribution network required/no line fees.✓ • No monthly electricity bills.✓ • (3) No cable theft issues.✓ • (Any 3) CCTV camera monitoring.✓ • • Electric fence.✓ Anti-theft brackets/mountings.✓ • Razor wire.√ (3) (Any 3) •

QUESTION 4: SKILLS AND CONSTRUCTION PROCESSES

- 4.1 Safety is one of the most important aspects when performing tasks in the workshop.
 - 4.1.1 FOUR safety equipment that needs to be present before performing a task in the workshop.
 - Safety/ welding screens.✓
 - Fire extinguisher.✓
 - Appropriate personal safety equipment.✓
 - First aid.✓

(4)

- 4.1.2 FIVE ways by which a farmer can limit risks and improve the safety of workers when working with gas equipment in a workshop.
 - Adequate orientation and training with reference to tools and equipment. ✓
 - Provide correct personal safety equipment. ✓
 - All tools and equipment in good working order.✓
 - All safety screens in place and in good working condition.✓
 - Fire extinguishers serviced and in place.✓
 - Emergency plan and numbers in place. \checkmark
 - Dangerous/ hazardous items locked away.✓
 - Safety signs in place.✓
 - Bottles correctly stored and secured. ✓ (Any 5) (5)
- 4.1.3 Explanation why it is not advisable to perform tasks alone in the workshop.
 - If you were to get hurt or electrocuted no one will be near to assist.✓
 - Certain tasks require assistance.✓ (2)

4.2 TWO types of welding machines.

- 4.2.1 Identification of welding machines A and B.
 - A- M.I.G/ CO² welder.✓
 - B- Inverter/ Arc welder.✓
- 4.2.2 Motivation of which welding machines would require more technical skills to work with.

A \checkmark More electronical/technical components and settings to adjust. \checkmark

OR

 $B\checkmark$ Difficult to learn to weld with this welder. The welding electrode is constantly becoming shorter. \checkmark

(2)

(2)

	4.2.3	Explanation of why it is not advisable to weld with welding machine A in an open field on a farm.	
		 The use of shielding gas makes this type of welding less portable than arc welding. ✓ The shielding gas can be blown away in windy conditions. ✓ Less portable machine. ✓ (Any 2) 	(2)
4.3	4.3.1	Direction of the threaded connector.	
		Clockwise.✓	(1)
	4.3.2	Identification of the part of the component that indicates the rate in which the gas flows.	
		A✓	(1)
	4.3.3	Indication of the defect that will occur when the gas working pressure is too low.	
		 Porosity on the weld.✓ Air bubbles on top of the weld.✓ (Any 1) 	(1)
4.4	Commo	on welding defects.	
	4.4.1	Lack of penetration.✓	(1)
	4.4.2	Higher current setting. ✓ Larger root gap. ✓ Smaller root face. ✓ Correct alignment of plates. ✓ (Any 1)	(1)
	4.4.3	Higher voltage setting/ pre-cleaning of metal with grinder/ keep the gun closer to the work piece. \checkmark	(1)
	4.4.4	Wire feeder speed too high.✓	(1)
4.5	Identific	ation of the parts in the MIG welding diagram.	
	B- Welc C- Shie	act tip.√ ling wire.√ lding gas.√ l pool.√	
		ding run.√	(5)

4.6	4.6.1	Indication and a reason of the correct angle of the weld electrode in relation to the work piece when welding a	•	
		45 degrees. \checkmark To prevent undercutting, \checkmark to ensure effi fusion of metals. \checkmark	cient (Any 1)	(2)
	4.6.2	TWO methods to prevent shrinking and distortion when the two pieces of metal.	n welding	
		 Spot welding.✓ Lap welding.✓ Pre-setting.✓ Clamping.✓ 	(Any 2)	(2)
4.7	Explan	ation of the types of metal deterioration:		
	4.7.1	Friction.		
		Metal on metal friction/rubbing.✓		(1)
	4.7.2	Metal fatigue.		
		Continuous flexing/vibration of a metal part. \checkmark		(1) [35]

QUESTION 5: TOOLS, IMPLEMENTS AND EQUIPMENT

- 5.1 5.1.1 THREE personal protective equipment that must be worn when working with the brush cutting machine.
 - Sturdy steel-toed work boots.✓
 - Long pants and long-sleeve shirts protect from flying debris, grass clippings and the sun.√
 - Use safety glasses, goggles or shields especially when mowing near solid objects like gravel driveways.✓
 - Ear protection is highly recommended during mowing.✓

(Any 3) (3)

- 5.1.2 FOUR safety tips when working with the brush cutting machine.
 - Read and understand the operator's manual and become familiar with the machine.✓
 - Remove all debris from lawns before mowing.✓
 - Use recommended PPE including close-fitting clothing when operating an edge cutter.✓
 - Keep all guards and safety shields in place.✓
 - Never disengage any safety interlock switches.✓
 - Never refuel the edge cutting machine when the engine is hot or running.✓
 - Store gasoline in an approved container with proper label.
 - Turn off the motor before cleaning the area under the safety screen.
 - Disconnect the spark or electric plug before troubleshooting or repairing the cutting machine.✓
 - Perform routine maintenance according to the schedule recommended by the manufacturer.✓
 - No bystanders and pets near a running cutting machine.

(Any 4) (4)

5.2 5.2.1 Identification of the type of hydraulic cylinder.

Double-action hydraulic cylinder.✓

(1)

- 5.2.2 FOUR advantages of the transmission oil that is used in the hydraulic cylinder.
 - Not compressible.✓
 - Good lubrication qualities.✓
 - Remains liquid over a large temperature range.✓
 - Not volatile.✓
 - Relatively cheap.✓
 - Flows through filters, pipes, oil pumps and cylinders with ease.✓
 - Contains detergents that keeps parts clean.✓

(Any 4)

5.3 5.3.1 Explanation why V-belts are preferred over flat belts.

- V-belts do not easily slip off pulleys.✓
- V-belts draw tighter round pulleys when tension increases.✓
- Lubrication is not necessary.✓
- V-belts are relatively strong, and under normal circumstances do not easily break.✓
- Cold, moist conditions, age or use do not cause V-belts to stretch or shrink.✓
- V-belts last longer than flat belts.✓
- If the pulleys over which a flat belt run are not aligned accurately the belt is thrown off.✓
- If flat belts are not lubricated regularly, they tend to slip on pulleys.✓
- When flat belts are put under extreme tension, they easily slip off a
 - pulley or break.✓
- A flat belt is subject to stretching and/or shrinking.✓

(Any 3) (3)

5.3.2 Calculation of the speed of pulley B on the pulley drive system.

Na X Da = Ng X Dg	
100x300=Ngx120√	
30000/120=Ng√	
Ng= 250√ r/min√	(4)

- 5.3.3 Name of pulley C and its function.
 - Tensioner pulley/ Jockey pulley.✓
 - The tensioner pulley uses the spring ✓ to put the correct tension on the V-belt to prevent the belt from slipping. ✓

5.4 Problems associated with the hitching of an implement.

5.4.1	Turn the top link to make it longer. \checkmark	(1)
-------	---	-----

- 5.4.2 Use the levelling box to level the implement to the tractor. \checkmark (1)
 - 5.4.3 Lower hitching point.✓
 - Install counterweights at the front end of the tractor. ✓ (1) (Any 1)
- 5.5 5.5.1 Identification of the type of round baler with a reason.
 - Vermeer type baler.✓
 - The baling chamber uses belts to form the bales. \checkmark (2)

(3)

- 5.5.2 Reasons for installing a slip clutch on the power take-off shaft of the round baler.
 - Prevents heavy objects from being taken into the baler.✓
 - Protects the pick-up if it is impeded by anything.✓
 - Protects the auger if it becomes overloaded. ✓ (Any 2) (2)
- 5.5.3 FOUR tasks that must be completed when preparing a baler for the baling season.
 - Check all safety clutches.✓
 - Sharpen all blades.✓
 - Check tires pressure.✓
 - Check bolt tension.✓
 - Inspect chassis and tires for damage.✓
 - Lubrication.✓
 - Check all bearings, chains and gears.
 - Check the tension on the belts and chains.
 - Make sure all safety screens are in place. ✓ (Any 4) (4)
- 5.5.4 How to prevent bales from rolling away when bailing against a slope.

Always position \checkmark the baler correctly before ejecting the bale from the bale chamber. \checkmark

- 5.6 5.6.1 Description of the working of the combine harvester when cutting the wheat.
 - The whole plant is fed into the thresher by the conveyer chain.✓
 - The hammers, blowers and sieves strip the grain and separate the chaff.✓
 - Wheat grains are collected in a bin inside the harvester.✓
 - Chaff is blown out at the back and can be collected for animal feed.
 - When full, the wheat is transferred to a truck. \checkmark (Any 3) (3)
 - 5.6.2 Explanation of the disadvantage of not setting a combine correctly before harvesting the wheat.
 - Wheat losses may occur due to sieves set incorrectly.✓
 - Wheat not removed from the ears.✓
 - Wheat is blown out by the blower of the machine.
 - If the drum speed is not correctly set, the combine may also break the wheat. ✓ (Any 2) (2)

[40]

(2)

(2)

(1)

(1)

(1)

(Any 2)

QUESTION 6: WATER MANAGEMENT

- 6.1 6.1.1 Advantages of the irrigation sprinkler.
 - Prevents over-irrigation.✓
 - Prevents under-irrigation.✓
 - Increase yields by precisely applying water where it's needed.✓
 - Water is equally distributed over the land.✓
 - Restricts water to soils with greater water holding capacity (e.g. Clay soil).✓
 - Maintains concentration of injectable (fertigation/herbicides).✓
 - Reduces irrigation costs. ✓ (Any 3) (3)
 - 6.1.2 TWO types of materials that can block or obstruct the irrigation sprinkler.
 - Fertilizers.√
 - High lime content water.✓
 - Organic material.✓
 - Rust.✓
 - Debris.✓
 - Mud/sand.✓
 - 6.1.3 A device that can be installed in the irrigation system to prevent blockages.

Filter.√

6.1.4 A device that can determine if irrigation is needed by the crop.

Soil moisture probe/sensor.✓

- 6.2 Preventing a centre pivot irrigation system getting stuck.
 - Prevent over irrigation.✓
 - Tyres with mud tracks.✓
 - Gravel or rocks in furrows.✓
 - Wider wheels.✓ (Any 2) (2)
- 6.3 A term that is used to describe the correct frequency and duration of irrigation in a field.

Irrigation scheduling.✓

6.4	Explai measi	nation of evapotranspiration and the name a device that is uure it.	used to	
	•	Evaporation of water from the soil and plant surfaces into the air. \checkmark Evaporation pan. \checkmark	,	(2)
6.5	6.5.1	The purpose of the two round structures on top of the septic tank.		
		Manholes for inspection.✓ Manholes for cleaning of the septic tank.✓	(Any 1)	(1)
	6.5.2	THREE types of matter that accumulates in the first compartment sewerage treatment system.	of this	
		 Solids.√ Raw sewage.√ Liquefied solids/sludge.√ Semi-solid scum (fats, oils).√ 	(Any 3)	(3)
	6.5.3	TWO maintenance tips that must be carried out on the septic tank	κ.	
		 Septic tank should be cleaned before the sludge level gets Live bacteria should be in the system at all times.√ When the system overflows, it should be emptied.√ 	s high. √ (Any 2)	(2)
	6.5.4	The functions of useful bacteria in a septic tank.		
		 The bacteria's job is to digest all organic waste matter. The bacteria brake down all bio-degradable solids. If there are no bacteria in your system it will simply act as a holding tank for waste. 	a	(3)
6.6	Functi	ion of a GPS device as installed on a tractor.		
	Precis	se location \checkmark and accuracy in the application of seeds/fertilizer. \checkmark		(2)
6.7	The ro	ble of irrigation software in crop production.		
	• • •	Software can be used to control water, turning it on and off. \checkmark Control how much water is delivered at any given time. \checkmark Irrigation software can also be programmed to manage the del liquid fertilizer products. \checkmark Can respond to ongoing weather conditions with automatic reprogramming. \checkmark	ivery of	

• Provides continuous feedback \checkmark and keep statistics and data. \checkmark (Any 5) (5)

6.8	The name of each	of the water	purification	systems as	described.
-----	------------------	--------------	--------------	------------	------------

- 6.8.1 Distiller / Distillation. \checkmark (1)
 - 6.8.2 Reverse osmosis. \checkmark (1)
 - [30]
 - TOTAL SECTION B: 160
 - GRAND TOTAL: 200

Copyright reserved