Downloaded from Stanmorephysics.com

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATREMATICS P1

COMMON TEST

JUNE 2023
TOTAL PROPERTY SICS COM

MARKS: 50

TIME: 1 hour

This question paper consists of 4 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 3 questions.
- 2. Answer ALL the questions.
- Number the answers correctly according to the numbering system used in this
 question paper.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- Answers only will NOT necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale
- 9. Write neatly and legibly.

QUESTION 1

1.1 Simplify:

1.1.1
$$(2x-3)(3x^2-4x+1)$$
 (2)

$$\frac{4^{x+1} \cdot 3^{x-1}}{12^{x-2}} \tag{4}$$

1.2 Factorise fully:

$$1.2.1 3x^2 - 2x - 5 (2)$$

1.2.2
$$-xy-(y-x)b+b^2$$
 (3)

QUESTION 2

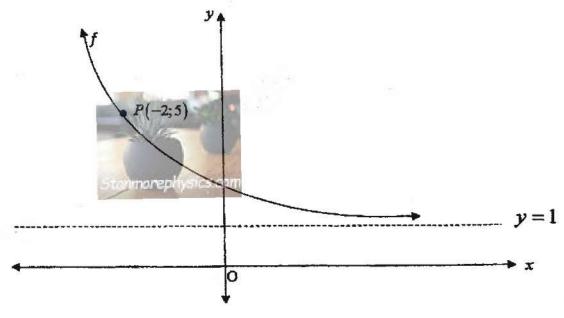
2.1 Solve for:

$$2.1.1 x(x-8) = -12 (3)$$

2.1.2
$$\frac{x-3}{1-x^2} - \frac{2x+4}{x+1} = \frac{-2x}{x-1}$$
2.1.3
$$3^x - 3^{x-2} = 24$$
 (5)

$$3^x - 3^{x-2} = 24 (3)$$

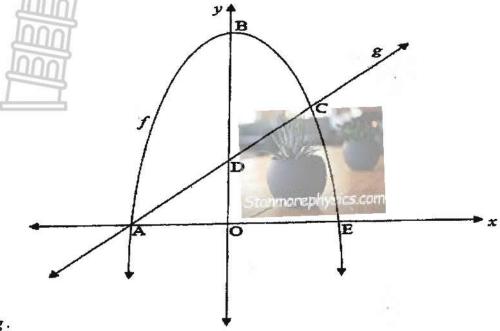
$$-1 < \frac{x}{2} + 3 \le 4 \tag{2}$$


The sum of the squares of two consecutive natural numbers is 85. 2.2 Determine the numbers.

(4) [17]

[11]

QUESTION 3


The sketch below shows a graph of $f(x) = b^x + q$. P(-2,5) is a point on the graph.

3.1.1 Calculate the values of b and q.

(4)

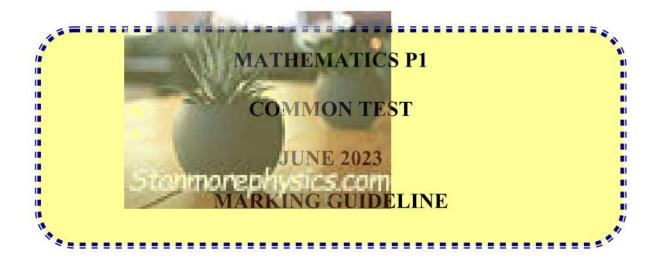
Sketched below are graphs of $f(x) = -x^2 + 9$ and g(x) = mx + 3. The graphs intersect at 3.2 points A and C. Points A and E are the x intercepts of f and B and D are the y intercepts of f and

g.

3.3 For which values of x is:

3.3.1
$$f(x) > g(x)$$
 (2)

$$\frac{f(x)}{g(x)} \le 0 \tag{2}$$


[22] TOTAL: [50]

Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 10

MARKS: 50

This marking guideline consists of 3 pages.

Copyright Reserved Please turn over

Marking Guideline

1.1.1	$=6x^3 - 8x^2 + 2x - 9x^2 + 12x - 3$	✓simplification	
	$=6x^3 - 17x^2 + 14x - 3$	√answer	(2)
1.1.2	$= \frac{2^{2x+2} \cdot 3^{x-1}}{2^{2x-4} \cdot 3^{x-2}}$ $= 2^{6} \cdot 3^{1}$ $= 192$	$✓ 2^{2x+2}$ $✓ 2^{2x-4}.3^{x-2}$ $✓ 2^6.3^1$ $✓ 192$	(4)
1.2.1	=(3x-5)(x+1)	$\checkmark(3x-5)$ $\checkmark(x+1)$	(2)
1.2.2	= -xy - yb + xb + b2 $= -y(x+b) + b(x+b)$	✓ simplification ✓ grouping/common factor	8
	=(x+b)(b-y)	✓answer	(3)
			[11]

QUESTION 2

2.1.1	$x^2 - 8x + 12 = 0$	✓standard form	6
	(x-6)(x-2)=0	√factors	
	x = 6 or x = 2	✓both answers	(3)
2.1.2	-(x-3) $2x+4 - 2x$	\checkmark -(x-3)	
	$\frac{-(x-3)}{(x-1)(x+1)} - \frac{2x+4}{x+1} = \frac{-2x}{x-1}$	$\checkmark(x-1)(x+1)$	(5)
	-(x-3)-(2x+4)(x-1)=-2x(x+1)	$\checkmark -2x^2 - 2x + 4$	
	$-x + 3 - 2x^2 - 2x + 4 = -2x^2 - 2x$	$\checkmark -2x^2 - 2x$	
	x = 7	✓answer	
2.1.3	$3^x \left(1 - 3^{-2} \right) = 24$	$\checkmark 3^x (1-3^{-2}) = 24$	
	$3^x \left(\frac{8}{9}\right) = 24$	$\checkmark 3^x = 27$	
	$3^x = 27$		
	$3^x = 3^3$		
	x=3	✓answer	(3)
2.1.4	$-4 < \frac{x}{2} \le 1$	$\sqrt{-4} < \frac{x}{2} \le 1$ $\sqrt{-8} < x \le 2$	
	$-8 < x \le 2$	$\sqrt{-8} < x \le 2$	
	(8) (3) (1 3)		(2)

Marking Guideline

$2.2.1 x^2 + (x+1)^2 = 85$	$\checkmark x^2 + (x+1)^2 = 85$
$x^{2} + x^{2} + 2x - 84 = 0$ $x^{2} + x - 42 = 0$	✓ standard form
$x^{2} + x^{2} + 2x - 84 = 0$ $x^{2} + x - 42 = 0$ $(x+7)(x-6) = 0$ $x \neq -7 \text{ or } x = 6$	$\checkmark x = 6$ $\checkmark x \neq -7$ (4)
	[17

QUESTION 3

		TOTAL:	[50]
			[22]
3.3.2	$x \ge 3 \text{ or } x \in [3; \infty)$	√√answer	(2)
3.3.1	$-3 < x < 2 \text{ or } x \in (-3; 2)$	✓✓ each end	(2)
	A(-3;0) $C(2;5)$	$\checkmark C(2;5)$	(4)
	$\begin{vmatrix} x-2\\y=5 \end{vmatrix}$	(d) (d)	
	(x+3)(x-2) = 0 $ x = 2$	$\checkmark A(-3;0)$	
	$ x^{2} + x - 6 = 0 $ $ (x+3)(x-2) = 0 $	$\checkmark(x+3)(x-2)=0$	
3.2.5	$-x^2 + 9 = x + 3$	$\checkmark -x^2 + 9 = x + 3$	i i
	m=1	✓ value of m	(2)
3.2.4	$m = \frac{3-0}{0+3}$	Substitution	
2 2 4	2.0	✓ AE ✓ substitution	(4)
	AE = 6 units	$\checkmark x = -3$	SWAX
3.2.3	$-x^2 + 9 = 0$ x = -3 or $x = 3$	\checkmark equating to 0 \checkmark $x = 3$	
3.2.3	1995 95 para 40,00 (0. cht)	\$ 55 850 X 1557	(2)
J.2.2	Range: $y \le 9$ or $y \in (-\infty, 9]$	$\checkmark x \in \Box \text{ of } x \in (-\infty, \infty)$ $\checkmark y \le 9 \text{ or } y \in (-\infty, 9]$	
3.2.2	Domain: $x \in R$	$\checkmark x \in \Box \text{ or } x \in (-\infty, \infty)$	(2)
	D(0;3)	$\checkmark D(0;3)$	/==
3.2.1	B(0;9)	✓ B(0;9)	
	q=1	\checkmark value of q	(4)
	$b = \frac{1}{2}$	\checkmark value of b	
	$\frac{1}{b^2} = 4$	b^2	
		$\checkmark \frac{1}{h^2}$	
	$b^{-2} + 1 = 5$	✓ substituting $P(-2;5)$	
3.1.1	$f(x) = b^x + q \text{ through } P(-2;5)$		