

KWAZULU-NATAL PROVINCE

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS P2

COMMON TEST

JUNE 2023

MARKS: 50

TIME: 1hour

This question paper consists of 5 pages and 1 DIAGRAM SHEET

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 5 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- A DIAGRAM/ANSWER SHEET for QUESTION 2, QUESTION 3, QUESTION 5.1.1 is attached at the end of this question paper. Detach the DIAGRAM SHEET /ANSWER SHEET hand in together with your ANSWER BOOK.
- 10. Write neatly and legibly.

QUESTION 1

In the diagram below P(7;4), Q(6;6), R(0;3) and S(x;y) are vertices of a parallelogram PQRS.

1.1.1 Calculate the length of PQ. (Leave your answer in surd form.)

1.1.2 If $T\left(\frac{7}{2}; \frac{7}{2}\right)$ is the mid-point of QS, determine the coordinates of S. (2)

1.1.3 If the coordinates of S are (1;1), show that $QR \perp RS$. (3)

1.1.4 Calculate the size of $R\hat{S}Q$. (3)

[11]

QUESTION 2

2.1 In the diagram below PQRS is a parallelogram with M on PS such that PM=PQ and MR=SR. $Q\hat{M}R = 90^{\circ}$ and $\hat{Q}_2 = x$.

2.1.1 Determine, with reasons two other angles which are equal to x.

2.1.2 Determine \hat{M}_3 in terms of x. (2)

2.1.3 Determine the numerical value of x. (2)

[8]

(4)

QUESTION 3

3.1 The diagram represents a parallelogram ABCD with BE=DF.

Prove that:

3.1.1
$$\triangle AEB \equiv \triangle CFD$$
 (4)

$$3.1.2 AE // CF (4)$$

[8]

QUESTION 4

4.1 In the diagram below P(4,3) is given and $0^{\circ} \le \theta \le 90^{\circ}$.

Calculate the following WITHOUT the use of a calculator:

$$4.1.2 \quad \cos\theta \tag{1}$$

$$4.1.3 1 - 2\sin^2\theta (2)$$

4.2 Use a calculator to find the values of the following, correct to THREE decimal places:

$$4.2.1$$
 $3\sin 65.8^{\circ}$ (1)

4.2.2
$$\sec 37.1^{\circ}$$

4.3 Determine the following, WITHOUT using a calculator:

4.3.1
$$\frac{\sin 45^{\circ}}{\cos 45^{\circ}} - 5\cos ec 90^{\circ} + 4\tan^{2} 30^{\circ}$$
 (5)

Solve for θ , correct to ONE decimal place, where $0^{\circ} \le \theta \le 90^{\circ}$.

4.4.1
$$2\sin(2\theta - 25^\circ) = 1$$
 (3)

[16]

QUESTION 5

5.1 Given: $f(x) = -\tan x$ and $g(x) = \cos x + 1$

- 5.1.1 Sketch the graphs of $f(x) = -\tan x$ and $g(x) = \cos x + 1$ on the same set of axes for $x \in [0^\circ; 180^\circ]$ on the ANSWER SHEET provided. (4)
- 5.1.2 Write down the amplitude of g.
- 5.1.3 Determine the range of g. (1)
- 5.1.4 Determine the period of f. (1)

(1) [7]

TOTAL: [50]

NAME & SURNAME:	
1000	

DIAGRAM SHEET

QUESTION 2

QUESTION 3

ANSWER SHEET QUESTION 5.1.1

NATIONAL SENIOR CERTIFICATE

GRADE 10

MARKS: 50

This marking guideline consists of 4 pages.

Copyright Reserved Please turn over

Downloaded from Stanmorephysics.com Mathematics P2 NSC-GRADE 10

Marking Guideline

Common Test JUNE 2023

	Inno	√formula	
1.1.1	$PQ = \sqrt{(x_2 - x_1)^2 + (x_2 - x_1)^2}$ $PQ = \sqrt{(7 - 6)^2 + (4 - 6)^2}$	✓substitution	
	$PQ = \sqrt{(7-6)^2 + (4-6)^2}$ $PQ = \sqrt{5}$	✓answer	(3)
1.1.2	$\frac{x+6}{2} = \frac{7}{2}$; $\frac{x+6}{2} = \frac{7}{2}$	$\sqrt{\frac{x+6}{2}} = \frac{7}{2}; \frac{x+6}{2} = \frac{7}{2}$	
	x = 1 $S(1;1)$ $y = 1$	$\checkmark S(1;1)$	(2)
1.1.3	$m_{QR} = \frac{1}{2}$	$\checkmark m_{QR} = \frac{1}{2}$	
	$m_{RS} = -2$	$\checkmark m_{RS} = -2$	
	But $m_{QR} \times m_{RS} = \frac{1}{2} \times -2$	$\checkmark m_{QR} \times m_{RS} = \frac{1}{2} \times -2$	
	$\therefore m_{QR} \times m_{RS} = -1$ $\therefore QR \perp RS$	$\checkmark m_{QR} \times m_{RS} = -1$	(4)
1.1.4	$RS = \sqrt{5}$		
	$RS = \sqrt{5}$ $RQ = \sqrt{(6-0)^2 + (6-3)^2}$	$\checkmark RQ = 3\sqrt{5}$	
	$RQ = 3\sqrt{5}$ $\tan R \hat{S} Q = 3 \cos COM$	$\checkmark \tan R \hat{S} Q = 3$	
	$R \hat{S} Q = 71,57^{\circ}$	$\checkmark R \hat{S} Q = 71,57^{\circ}$	(3)
			[11]

QUESTION 2

2.1.1	$\hat{M}_1 = \hat{Q}_2 = x$	[Alternating \angle 's; PS $//$ QR]	✓S✓R	
	$\hat{Q}_1 = \hat{M}_1 = x$	$[\angle' s \text{ opp.} = \text{sides}; PQ = PM]$	✓S✓R	(4)
2.1.2	$\hat{M}_3 = 90^\circ - \hat{M}_1$ $\therefore \hat{M}_3 = 90^\circ - x$	[Adjacent \angle 's on a str. line]	√S√R	(2)

Copyright Reserved Please turn over

Downloaded from Stanmorephysics.com Mathematics P2 NSC-GRADE 10

Marking Guideline

Common Test JUNE 2023

2.1.3	$\hat{M}_3 = \hat{S} = 2x$ $x + 90^\circ + 2x = 180^\circ$ $x = 30^\circ$ OR $\hat{M}^3 = 90^\circ - x$ $2x = 90^\circ - x$	[\angle 's opp. = sides; $MR = SR$] [Adjacent \angle 's on a str. line] [Adjacent on a str.line]	$\checkmark x+90^{\circ}+2x=180^{\circ}$ $\checkmark x=30^{\circ}$ $\checkmark \hat{M}^{3}=90^{\circ}-x$ $\checkmark x=30^{\circ}$	(2)
	$3x = 90^{\circ}$			
	$x = 30^{\circ}$			[8]

QUESTION 3

$ABE = FDC$ $AB = DC$ $BE = FD$ $\therefore \Delta AEB \equiv \Delta CFD$	[Alternating ∠'s; AB□] [Opp. sides of parm] [given] [SAS]	✓S/R ✓S/R ✓S/R ✓S/R	(4)
$ \begin{array}{c} \hat{BAE} + \hat{ABE} = \hat{A}_1 \\ \text{Similarly,} \end{array} $	[exterior $\angle \Delta$]	✓S/R ✓S/R	
$\therefore \hat{F_4} = \hat{E_1}$	-	$\checkmark \hat{F_4} = \hat{E_1}$	(4)
AE // CF	[alternating \angle 's =]	✓R	[8]
	$AB = DC$ $BE = FD$ $\Delta AEB = \Delta CFD$ $BAE = FCD$ $BAE + ABE = A_1$ Similarly, $FDC + FCD = F_4$	AB = DC [Opp. sides of parm] BE = FD [given] ∴ $\triangle AEB \equiv \triangle CFD$ [SAS] $B\hat{A}E = F\hat{C}D$ [$\equiv \triangle's$] $B\hat{A}E + A\hat{B}E = \hat{A}_1$ [exterior $\angle \triangle$] Similarly, $F\hat{D}C + F\hat{C}D = \hat{F}_4$ [exterior $\angle \triangle$] ∴ $\hat{F}_4 = \hat{E}_1$	$AB = DC \qquad [Opp. sides of parm]$ $BE = FD \qquad [given]$ $\Delta AEB = \Delta CFD \qquad [SAS]$ $AB = F \hat{C} D \qquad [SAS]$ $AE + AB = A \qquad [SAS]$ $AE = F \hat{C} D \qquad [SAS]$ A

QUESTION 4

4.1.1	$OP^{2} = (4)^{2} + (3)^{2}$ [Pythagoras] OP=5	✓S/R ✓answer	(2)
4.1.2	$\cos\theta = \frac{4}{5}$	$\checkmark \frac{4}{5}$	(1)
4.1.3	$=1-2\left(\frac{3}{5}\right)^2$	$\checkmark \frac{3}{5}$	
	$=\frac{7}{25}$	✓answer	(2)
4.2.1	2,736	✓answer	(1)

Copyright Reserved

Downloaded from Stanmorephysics.com natics P2 NSC-GRADE 10

Mathematics P2

Marking Guideline

Common Test JUNE 2023

4.2.2	$= \frac{1}{\cos 37,1^{\circ}} \\ = 1,254$	$\checkmark \frac{1}{\cos 37,1^{\circ}}$ $\checkmark \text{answer}$	(2)
4.3.1	$= 1,254$ $= \tan 45^{\circ} - 5(1) + 4\left(\frac{1}{\sqrt{3}}\right)^{2}$ $= 1 - 5 + \frac{4}{3}$ $= -4 + \frac{4}{3}$ $= -\frac{8}{3} / -2\frac{2}{3}$	$ \begin{array}{c} \sqrt{\tan 45^{\circ}} \\ \sqrt{1} \\ \sqrt{\frac{\sqrt{3}}{2}} \\ \sqrt{1} \\ \sqrt{\tan 45^{\circ}} \end{array} $	(5)
4.4.1	$\sin(2\theta - 25^\circ) = \frac{1}{2}$ $2\theta - 25^\circ = 30^\circ$ $\theta = 27,5^\circ$	$\checkmark \sin(2\theta - 25^\circ) = \frac{1}{2}$ $\checkmark 2\theta - 25^\circ = 30^\circ$ $\checkmark \text{answer}$	(3)
			[16

QUESTION 5

