

NATIONAL SENIOR CERTIFICATE

MARKS: 75

TIME: 11/2 hours

This question paper consists of 5 pages.

Mathematics Downloaded from Stanmorephysics.com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 3 questions.
- Answer ALL the questions.
- Number the answers correctly according to the numbering system used in this
 question paper.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- Answers only will NOT necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- Write neatly and legibly.

QUESTION 1

1.1 Indicate whether each of the following numbers is rational or irrational:

$$1.1.1 \sqrt{15}$$
 (1)

1.1.3
$$\sqrt[3]{8}$$

- 1.2 Write down TWO rational numbers between $\sqrt{2}$ and $\sqrt{10}$ (Show your working). (2)
- 1.3 Write down 0,111111111.... as a fraction. (2)
- 1.4 Factorise the following expressions fully;

1.4.1
$$x^3 - 8$$
 (2)

$$1.4.2 \quad 2x^3 + x^2 - 6x - 3 \tag{3}$$

$$\begin{array}{c}
1.4.3 \\
\text{Stanmore physics.com}
\end{array} \tag{3}$$

1.5 Simplify the following expressions fully;

1.5.1
$$(2x-1)(x^2-2x+1)$$
 (2)

$$1.5.2 \quad (3x+5)^2 \tag{2}$$

$$\frac{2^{x}-2^{x-2}}{2^{x+1}-2^{x}} \tag{4}$$

1.5.4
$$\frac{3}{a-4} + \frac{2}{a+3} - \frac{21}{a^2 - a - 12}$$
 (5)

QUESTION 2

2.1 Solve for x:

$$2.1.1 \quad (x+3)(x-1) = 0 \tag{2}$$

$$2.1.2 \quad 2x^2 - 5x + 2 = 0 \tag{3}$$

$$(3)^{2.1.3} (2)^{3x-1} = 64$$

$$2.1.4 27^{x-2} = 81^{2x+1} (4)$$

- Solve the inequality $-2 < 4 + 2x \le 6$ and represent the solution in the interval notation. (4)
- 2.3 Solve for x and y simultaneously if:

$$x+3y-5=0 2x-6y+2=0$$
 (5)

- 2.4 morphe difference between two numbers is 5. Six times the smaller number is equal to four times the greater number. Find the numbers. (4)
- 2.5 If $p = 1 + 3^x$ and $q = 1 + 3^{-x}$, prove that $q = \frac{p}{p-1}$ [28]

QUESTION 3

3.1 A right angles triangle with sides p, q and s and the angle θ , as shown below.

3.1.1 Write down the values of p, q and s:

(a)
$$\tan \theta$$

(b)
$$-\sin\theta$$

(c)
$$\sec^2 \theta$$
 (2)

3.1.2 If it is given that
$$p = 12$$
 and $\theta = 35^{\circ}$, calculate the numerical value of q . (2)

3.2 If $\hat{A}=20^{\circ}$ and $\hat{B}=55^{\circ}$, use your calculator to evaluate the following (correct to TWO decimal places).

3.2.1
$$\sin(A+B)$$
 (2)

3.2.2
$$\tan^2 B$$
 (2)

3.3 Without the use of the calculator, showing all your working, determine the value of:

$$\frac{\sin 45^{\circ} \cdot \tan^{2} 60^{\circ}}{\cos 45^{\circ}} + \sin 30^{\circ} \tag{5}$$

TOTAL [75]

KWAZULU-NATAL PROVINCE

EDUCATION
REPUBLIC OF SOUTH AFRICA

MATHEMATICS COMMON TEST MARCHI 2024 MARKING GUIDELINE

Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 10

MARKS: 75

This marking guideline consists of 6 pages.

Copyright Reserved Please turn over

GRADE 10 Marking Guideline

QUESTION 1

1.1.1	Irrational	√answer	(1)
1.1.2	Rational	√answer	(1)
1.1.3	Rational	√answer	(1)
1.1.4	Rational	√answer	(1)
1.2	$\sqrt{4}$ and $\sqrt{9}$	$\sqrt{4}$ and $\sqrt{9}$	
	=2 and 3	V I and VS	
		√both answers	(2)
1.3	Let 0,11111= k		
	1,11111=10k	$\sqrt{1,111111}=10k$	
	9k = 1		
	$k = \frac{1}{9}$	$\checkmark k = \frac{1}{9}$	
	9	9	
			(2)
1.4.1	$=(x-2)(x^2+2x+4)$	$\checkmark(x-2)$	
		$\sqrt{(x^2+2x+4)}$	0.000000
		(1 + 21 + 4)	(2)
1.4.2	$=x^2(2x+1)-3(2x+1)$	√√each term	8
	$=(x^2-3)(2x+1)$		
	-(A 5)(ZA 1)	√answer	(3)
1.4.3	$a(x^2 - e^4)(x^2 + e^4)$	$\sqrt{(x^2-4)(x^2+4)}$	
	$=(x-2)(x+2)(x^2+4)$		
	$=(x-2)(x+2)(x^2+4)$	$\checkmark \checkmark (x-2)(x+2)(x^2+4)$	(3)
1.5.1	$=2x^3-4x^2+2x-x^2+2x-1$	√simplification	
	$=2x^3-5x^2+4x-1$		
	-21 -31 +41-1	√answer	(0)
	2 22 2	Answer only: full marks	(2)
1.5.2	=(3x+5)(3x+5)	√expansion	
	$=9x^2+15x+15x+25$	/0v² +15··· 15··· 25	
	$=9x^2+30x+25$	$\checkmark 9x^2 + 15x + 15x + 25$ $\checkmark \text{ answer}$	(3)
1.5.3	$2^{x} - 2^{x} \cdot 2^{-2}$	✓ factors	(5)
1.0.0	$=\frac{2-2.2}{2^{x}.2-2^{x}}$	accord.	
	$=\frac{2^{x}\left(1-2^{-2}\right)}{1-2^{-2}}$	✓common factor	
	$-2^{x}(2-1)$		
	$=1-\frac{1}{1}$	1	
	4	$\sqrt{\frac{1}{4}}$	
	$=\frac{3}{}$	4	
	$-\frac{1}{4}$	$\sqrt{3}$	
		$\sqrt{\frac{3}{4}}$	(4)
		<u> </u>	hummingered

Marking Guideline

$=\frac{3(a+1)}{(a+1)}$ $=\frac{3a+9}{(a+1)}$	$\frac{2}{a+3} - \frac{21}{(a-4)(a+3)}$ $3)+2(a-4)-21$ $a-4)(a+3)$ $+2a-8-21$	✓ factorisation of a quadratic trinomial ✓ finding the LCD and the simplification of the numerator	
$=\frac{5a}{(a-4)}$	-4)(a+3) -20 $-(a+3)$ $-4)$	✓ simplification ✓ factorising the numerator	(5)
=	$\frac{4}{2(a+3)}$	✓ answer	
			[29]

QUESTION 2

2.1.1	x = -3 or $x = 1$	✓✓ each answer	(2)
2.1.2	(2x-1)(x-2)=0	√factors	
	$x = \frac{1}{2} \text{ or } x = 2$	✓✓ each answer	
			(3)
2.1.3	$2^{3x-1} = 2^6$	✓ 2 ⁶	
	3x - 1 = 6 $3x = 7$	✓ equating exponents	
	$x = \frac{7}{3}$	√answer	(3)
2.1.4	$\left(3^{3}\right)^{x-2} = \left(3^{4}\right)^{2x+1}$	$\checkmark (3^3)^{x-2} = (3^4)^{2x+1}$	
	$3^{3x-6} = 3^{8x+4}$ $3x - 6 = 8x + 4$	√simplification	
	x = -2	✓ equating exponents ✓ answer	(4)
2.2	$-6 < 2x \le 2$	√transposing	8
	$-3 < x \le 1$ $x \in (-3;1]$	$\sqrt{-3} < x \le 1$	
	North Control of the	✓✓ each end	(4)
2.3	$x+3y+5=0 \to (1)$ $2x-6y+2=0 \to (2)$		
	From equation (1) $x = 5 - 3y - $	\checkmark making x the subject of the formula	

Marking Guideline

x = 10	x-value	(4)
y = 15	✓ <i>y</i> -value ✓ <i>x</i> -value	(4)
6y - 30 = 4y		
Subst. (3) into (2) $6(y-5) = 4y$	✓substitution	
$x = y - 5 \rightarrow (3)$	\sqrt{x} -subject of the formula	
From eq(1)		
y = 15	y-value ✓ y	(4)
x=10		
6x = 4x + 20	✓ x-value	
6x = 4(x+5)	✓substitution	
Subst. (3) into (2)		
y = x + 5(3)	√y-subject of formula	
From eq(1)		
$y-x=5 \dots \longrightarrow (1)$ $6x=4y \dots \longrightarrow (2)$		
and the bigger number be: y		
2.4 Let the smaller number be: 2		
(2,1)		(5)
$\begin{array}{c} x = 2 \\ (2;1) \end{array}$		
x = 5 - 3(1)	✓ x-value	
y=1	y -value	
12y-12=0	✓ y -value	
Add eq. (3) and eq. (4)	✓simplification	
$2x-6y+2=0\rightarrow (2)$	\checkmark eliminating x	
$-2x-6y+10=0$ $\rightarrow (3$		
Multiply eq. (1) by −2		
$2x-6y+2=0\to$	✓ multiplying eq(1) by −2	
x+3y-5=0		
(2;1)		(5)
x=2		(E)
x = 5 - 3(1)	✓ x-value	
y=1	✓ y -value	
10-6y-6y+2=0	✓ simplification	
2(5-3y)-6y+2=0	✓substitution	

Marking Guideline

	From eq(2) $y = \frac{3}{2}x \rightarrow (3)$ Subst. eq(3) into eq(1)	✓y-subject of formula	
	$\frac{3}{2}x - x = 5$ $\frac{1}{2}x = 5$	✓substitution	
	x=10	✓x-value	
	y = 15	✓y-value	(4)
2.5	$RHS = \frac{1+3^{x}}{1+3^{x}-1}$	✓substitution	
	$= \frac{1+3^{x}}{3^{x}}$ $= \frac{1}{3^{x}} + \frac{3^{x}}{3^{x}}$ $= 3^{-x} + 1$	$\sqrt{\frac{1}{3^x} + \frac{3^x}{3^x}}$ $\sqrt{3^{-x} + 1}$	
	OR		
	$LHS = 1 + \frac{1}{3^x}$ $= \frac{3^x + 1}{3^x}$	✓ finding the L.C.D	
	$RHS = \frac{1+3^x}{1+3^x-1}$	✓substitution	
	$=\frac{1+3^x}{3^x}$	✓ answer	(0)
	$\therefore LHS = RHS$		(3) [28]
	I		[20]

QUESTION 3

3.1.1(a)	$\tan \theta = \frac{s}{q}$	√answer	(1)
3.1.1(b)	$-\sin\theta = -\frac{s}{p}$	√answer	(1)
3.1.1(c)	$= \left(\frac{p}{q}\right)^2$ $= \frac{p^2}{q^2}$	✓ substitution ✓ answer Answer only: full marks	(2)

Copyright Reserved Please turn over

Marking Guideline

	1001		- 45 E
3.1.2	$\cos 35^\circ = \frac{q}{12}$	✓trig. ratio	
20	q = 9,83	√answer	(2)
3.2.1	$= \sin\left(20^\circ + 55^\circ\right)$ $= 0.97$	✓ substitution ✓ answer Answer only: full marks	(2)
3.2.2	= 2,04	✓ substitution ✓ answer	(2)
3.2.3	=2cosec20°+sin5(55°) = $\frac{2}{\sin 20^{\circ}}$ +sin5(55°) = 4,85	✓ substitution $ \sqrt{\frac{2}{\sin 20^{\circ}}} $ ✓ answer	(3)
3.2.4	$=\frac{\frac{\sqrt{2}}{2}\cdot\left(\frac{\sqrt{3}}{1}\right)^2}{\frac{\sqrt{2}}{2}} + \frac{1}{2}$ $=3\frac{1}{2}$	$ \frac{\sqrt{2}}{2} \checkmark \left(\frac{\sqrt{3}}{1}\right)^{2} $ $ \frac{\sqrt{2}}{2} \checkmark \left(\frac{\sqrt{3}}{1}\right)^{2} $ $ \frac{\sqrt{2}}{2} \checkmark \left(\frac{\sqrt{3}}{1}\right)^{2} $ $ \frac{\sqrt{2}}{1} \checkmark \left(\frac{\sqrt{3}}{1}\right)^{2} $ $ \frac{\sqrt{3}}{1} \checkmark \left(\frac{\sqrt{3}}{1}\right)^{2} $ $\frac{\sqrt{3}}{1} \checkmark \left(\frac{\sqrt{3}}{1}\right)^{2} $ $\frac{\sqrt{3}}{1} \checkmark \left(\frac{\sqrt{3}}{1}\right)^{$	(5)
			[18]

TOTAL: 75

Copyright Reserved