

VHEMBE EAST DISTRICT

VHEMBE EAST DISTRICT

NATIONAL
SENIOR CERTIFICATE

GRADE 10

MATHEMATICS P1
MID YEAR EXAMINATION
JUNE 2022

MARKS: 50
TIME: 1 hour

Stanmorephysics.com

This Question paper consists of 6 pages including the cover page.

Copyright Reserved Please Turn Over

INSTRUCTIONS

- 1. Answer ALL the questions.
- Clearly show ALL calculations, diagrams, graphs etc. that you have used in determining your 2. answers.
- Answers only will not necessarily be awarded full marks. 3.
- An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated 4. otherwise.
- If necessary, answers should be rounded-off to TWO decimal places, unless stated otherwise. 5.
- Diagrams are NOT necessarily drawn to scale. 6.
- Number the answers correctly according to the numbering system used in this question paper. 7.
- It is in your interest to write legibly and to present your work neatly. 8.

Copyright Reserved Please Turn Over

мДюминостью from Stanmoreploysics.com

Vhembe East /June 2022

QUESTION 1

- 1.1 The value of $\sqrt{33}$ lies between two integers. Find these integers without finding the exact value of $\sqrt{33}$
- Convert the following recurring decimal fraction $0,\dot{4}\dot{5}$ to a common fraction in its simplest 1.2

QUESTION 2

2.1 Simplify:

mplify:
$$\frac{(3x)^{2}(-2xy)^{3}}{2x^{5}y^{4}}$$
ctorise completely:
$$6p + 40 - p^{2}$$

$$-xy - (y - x)b + b^{2}$$

$$(3)$$
follow for x:
$$\frac{x + 2}{^{2}-3x - 4} = \frac{3}{x - 4} \cdot \frac{1}{2 + 2x}$$
The for x and allow trate your answer on a number line.

2.2 Factorise completely:

$$2.2.1 \quad 6p + 40 - p^2 \tag{3}$$

$$2.2.2 -xy - (y-x)b + b^2$$
 (4)

[10]

[11]

(2)

(3) [5]

QUESTION 3

3.1 Solve for x:

$$\frac{x+2}{x^2-3x-4} = \frac{3}{x-4} \frac{1}{2+2x} \tag{5}$$

Solve for x and illustrate your answer on a number line. 3.2

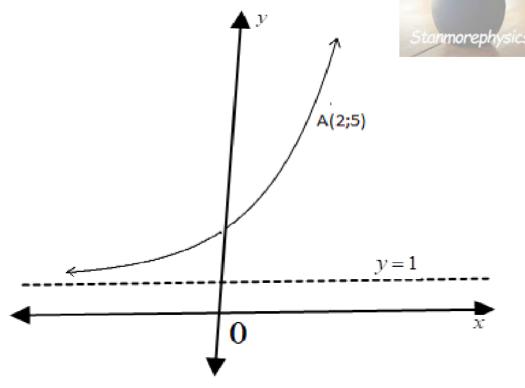
$$-2 \le \frac{x}{2} < 3 \tag{3}$$

The sum of two consecutive numbers is 83. Find the numbers. 3.3 (3)

QUESTION 4

4.1 The following pattern is given: 5; 8; 11; 14; ...

> Determine the general term of the pattern. (3)

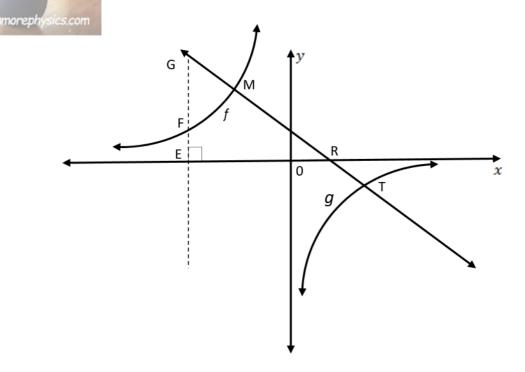

4.2 3x-7; 2x; 3x+1;.....are the first three terms of a linear pattern.

> If the pattern continues in this manner, determine the value of *x*. 4.2.1 (4)

4.2.2 Which term in the sequence is the first to be greater than 31? (3) [10]

QUESTION 5

The sketch below shows the graph of $f(x) = b^x + q$. A point A(2,5) appears on the graph.



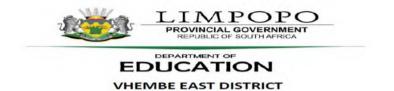
Calculate the values of b and q.

(3)

5.2 Given: f(x) = -x + 2 and $g(x) = \frac{-3}{x}$, which is not drawn to scale.

M and T are points of intersection of the graphs.

Determine:


5.2.1 The coordinates of M and T. (6)

5.2.2 The coordinates of R. (2)

5.2.3 The length of GF if E (-6; 0) and F is a point where GF intersect the graph of f(x) (3) [14]

TOTAL: 50

Downloaded from Stanmorephysics.com

VHEMBE EAST DISTRICT

NATIONAL
SENIOR CERTIFICATE

GRADE 10

MATH MEMO P1

MID YEAR EXAMINATION

JUNE 2022

MARKS: 50

This memorandum consists of 4 pages including the cover page.

	QUESTION 1	
1.1	25 < 33 < 36	
	25 < 33 < 36	✓ 25;36
	5 < 33 < 6	
	$\sqrt{33}$ lies between 5 and 6	✓ answer
	Stanmorephysics.com	(2)
	Let $x = 0.45454545$	$\sqrt{100x} = 45,45454545$
	100x = 45,45454545	100% 10, 10 10 10
	100x - x = 45 $99x = 45$	✓ 99x = 45
	$x = \frac{45}{99}$ $= \frac{5}{11}$	
	_ 5	✓ answer
	$-\frac{1}{11}$	
		(3)
	QUESTION 2	
2.1		
	$\frac{(3x)^2(-2xy)^3}{2x^5y^4} = \frac{3^2x^2(-2)^3x^3y^3}{2x^5y^4}$	✓ exponents
	$9x^{2+3-5}(-2)^3$	
	$=\frac{9x^{2+3-5}\left(-2\right)^3}{2y^{4-3}}$	✓ simplifying
	$9x^{0}(-8)$, , ,
	$=\frac{9x^{0}\left(-8\right)}{2y}$	
		✓ answer
	$=\frac{-36}{v}$	(3)
2.2.1	$\frac{y}{6p+40-p^2}$	$\sqrt{-(p^2-6p-40)}$
2.2.1		I
	$= -(p^2 - 6p - 40)$ = -(p-10)(p+4)	$\checkmark -(p-10)$ $\checkmark (p+4)$
	=-(p-10)(p+4)	(p+4)
		(3)
2.2.2	$-xy - (y - x)b + b^2 = -xy - by + bx + b^2$	(3) $\checkmark -xy - by + bx + b^2$
	= -y(x+b) + b(x+b) = (x+b)(-y+b)	✓grouping
	-(x+b)(-y+b)	$\checkmark (x+b)$
		$\checkmark (-y+b) \tag{4}$
2.1	QUESTION 3	
3.1	$\frac{x+2}{x^2-3x-4} = \frac{3}{x-4} - \frac{1}{2+2x}$	✓ correct factors
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• Correct factors
	$\frac{x+2}{(x-4)(x+1)} = \frac{3}{x-4} - \frac{1}{2(x+1)}$	(5)
	(1-4)(11) 1-4 2(11)	$\checkmark 2(x+2)$

Multiply by CD: $2(x+1)(x-4)$: $2(x+2) = 2 \times 3(x+1) - (x-4)$ 2x+4=6x+6-x+4 2x+4=6x+6-x+4	
$2(x+2) = 2 \times 3(x+1) - (x-4)$ $2x+4 = 6x+6-x+4$	
2x+4=6x+6-x+4	
3x = -6	
$\therefore x = -2$	
(5)	
$\begin{vmatrix} 3.2 \\ -2 \le \frac{x}{2} + 1 < 3 \end{vmatrix} \qquad \checkmark -3 \le \frac{x}{2} < 2$	
$\begin{vmatrix} -2 \le \frac{x}{2} + 1 < 3 \\ -3 \le \frac{x}{2} < 2 \end{vmatrix}$ $\sqrt{-3} \le \frac{x}{2} < 2$ $\sqrt{-6} \cdot £ \cdot x < 4$	
$-6 \le x < 4$ v number line	
(3)	
Φ (3)	
-6 4	
3.3 Let the first number be y	
The other number will be y+1 $\therefore y + (y+1)=83$	
2y+1=83 ✓ equation	
2y=82	
y=41 ✓ answers	
The two numbers are 41 & 42	
(3)	
QUESTION 4	
4.1 $T_1 = 3(1) + 2 = 5$ method	
$T_2 = 3(2) + 2 = 8$	
$T_3 = 3(3) + 2 = 11$ 3n	
$T_4 = 3(4) + 2 = 14$	
$T_n = 3n + 2 \tag{3}$	
4.2.1 $3x-7; 2x; 3x+1;$ \checkmark d values	
$2x - (3x - 7) = 3x + 1 - 2x \ 2x - (3x - 7) = 3x + 1 - 2x$ $2x - 3x + 7 = x + 1$ equate	
$-2x = -6$ $-2x = -6$ $\checkmark \text{ answer}$	
$\therefore x = 3 \qquad \qquad \therefore x = 3$	
(4)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$T_n = 4n - 2$ $\checkmark 4n - 2 > 31$	
✓ n>8,25	

	4n-2 > 31	√ samalasaism
		✓ conclusion
	4n > 33	(3)
	n > 8, 25	
	∴n=9	
	QUESTION 5	
5.1	q=1	✓ q=1
	$y = b^x + 1$	✓ subst coordinates
	$5 = b^2 + 1$	
	$b^2 = 4$	✓ b=2 (3)
5.2.1	$\therefore b = 2$ $y = -x + 2 \dots \dots$	
5.2.1		
	$y = \frac{-3}{x} \qquad(2) no rephysics. com$	
	Substitute (1) in (2): $-x + 2 = \frac{-3}{x}$	✓ substituttion
	Λ	✓ simplification
	$-x^2 + 2x = -3 \qquad -x^2 + 2x = -3$	✓ factors
	$x^2-2x-3=0$ $x^2-2x-3=0$	1401015
	(x-3)(x+1)=0	✓ x-values
	x = 3 or x = -1	
	y = -(3) + 2 or $y = -(-1) + 2$	✓ y-values
	$\therefore y = -1 or y = 3$	✓ coordinate form
	M(3;-1) & T(-1;3)	(6)
5.2.2	R(2;0)	√ 2
		√ 0
		(2)
5.2.3	y = -(-6) + 2	
	GE = 8	✓ GE=8
	$y = \frac{-3}{-6}$	1
	$y = \frac{1}{-6}$	\checkmark $EF = \frac{1}{2}$
	$EF = \frac{1}{2}$	_
		$\checkmark 7\frac{1}{2}$
	$\therefore GF = 8 - \frac{1}{2}$	$\frac{\sqrt{2}}{2}$
	$= 7\frac{1}{2}$ Stormore physics.com	
		(3)