

## basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA** 

NATIONAL SENIOR CERTIFICATE

### **GRADE 10**

| 4    | , W | Ħ | = ; |   | 2 2 |   |     | =   |     |   |   | <b>i</b> |     | -  |     | -   |     | ■          | ē  |    | -          |                  |    |   |            |     |   |     |     |   | = i |     | Ŵ   | 22  |   |   |   |     | =   | *           |
|------|-----|---|-----|---|-----|---|-----|-----|-----|---|---|----------|-----|----|-----|-----|-----|------------|----|----|------------|------------------|----|---|------------|-----|---|-----|-----|---|-----|-----|-----|-----|---|---|---|-----|-----|-------------|
| - 10 |     |   |     |   |     |   |     |     |     |   |   |          |     | 18 |     |     |     | <b>N</b> M |    |    | <b>.</b> . |                  | nT | à | a          | n   | ~ |     |     |   |     |     |     |     |   |   |   |     |     | <b>\$</b> } |
| I B  |     |   |     |   |     |   |     |     |     |   |   |          |     | 1  | VI. | A   | Т   | H          | Е  | IV | LA         | V.I              | IJ | U | S          | r   | 2 |     |     |   |     |     |     |     |   |   |   |     |     | <b>#</b> I  |
| I    |     |   |     | • |     |   |     |     |     |   |   |          |     |    |     |     |     |            |    |    |            |                  |    |   |            |     |   |     |     |   |     |     |     |     |   |   |   |     |     |             |
| 18   |     |   |     |   |     |   |     |     |     |   |   |          |     |    |     |     |     |            |    |    |            |                  |    |   |            |     |   |     |     |   |     |     |     |     |   |   |   |     |     | ۳I          |
| 18   |     |   |     |   |     |   |     |     |     |   |   |          |     |    | N   | Jſ  | 71  | VI         | EN | ЛП | RI         | $\mathbf{E}^{1}$ | R  | 2 | <b>A</b> 1 | 10  | ) |     |     |   |     |     |     |     |   |   |   |     |     | 21          |
| I.   |     |   |     |   |     |   |     |     |     |   |   |          |     |    | 1   | I.  |     | W., W      | -1 |    |            |                  |    |   |            |     |   |     |     |   |     |     |     |     |   |   |   |     |     | <b>#</b> I  |
| _ W. |     | _ | -   | _ | _   | _ |     |     |     |   | - |          |     |    |     |     |     |            |    |    |            |                  | -  | - | _          |     |   |     |     | - |     |     |     |     |   | - | - |     |     | •           |
|      |     |   |     | = |     |   | = : | = : | . = | = |   |          | ± : |    |     | . = | . = |            |    |    |            |                  |    |   |            | = : |   | . = | . = |   |     | 8 1 | 2 2 | ! = | = | = | = | = = | : # | •/          |

#### **MARKS: 100**

TIME: 2 hours

This question paper consists of 10 pages and a 15-page answer book.

downloaded from Stanmorephysics.com

Copyright reserved

#### INSTRUCTIONS AND INFORMATION

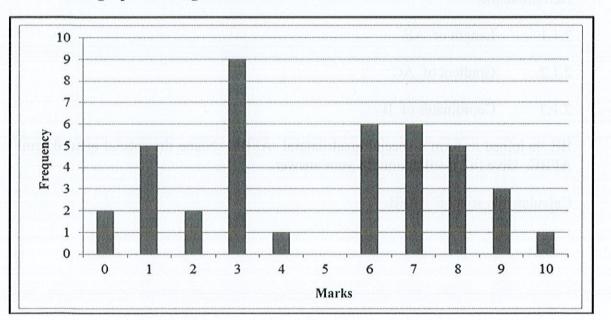
Read the following instructions carefully before answering the questions.

- 1. This question paper consists of EIGHT questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. that you used to determine the answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. You must use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 8. Write neatly and legibly.

(1)

(1)

(3)


(2)

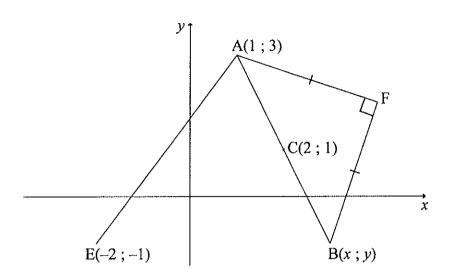
#### **QUESTION 1**

1.1 An ice cream vendor recorded his daily sales for a period of time. The number of ice creams that he sold each day is given in the table below.

|    | 7  | and the second se | and the statement of th | and the second se | the second second |    |    |    | the second s |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|----|----|----------------------------------------------------------------------------------------------------------------|
| 29 | 30 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44                | 45 | 51 | 55 |                                                                                                                |

- 1.1.1 Write down the mode of the data set.
  - 1.1.2 Determine the median of the data set.
  - 1.1.3 Calculate the interquartile range.
  - 1.1.4 On the scaled line provided in the ANSWER BOOK, draw a box and whisker diagram for the data set.
- 1.2 Learners in a certain class wrote a Mathematics test that had a maximum mark of 10. The teacher represented the marks obtained by the learners of this class in the bar graph below.




#### Bar graph showing distribution of marks scored in Mathematics test

| 1.2.1 | How many learners scored 8 marks out of 10 for the test?                                | (1)                  |
|-------|-----------------------------------------------------------------------------------------|----------------------|
| 1.2.2 | How many learners are in this class?                                                    | (1)                  |
| 1.2.3 | Calculate the range of the marks scored in the test.                                    | (2)                  |
| 1.2.4 | If the pass mark for the test was 50%, what percentage of the learners failed the test? | (2)                  |
| 1.2.5 | Calculate the mean mark scored in the test.                                             | (3)<br>[ <b>16</b> ] |

Please turn over

#### **QUESTION 2**

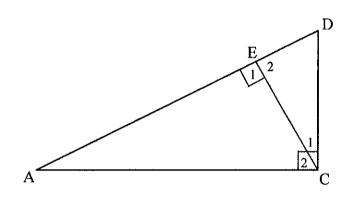
In the diagram below, A(1; 3), B(x; y) and E(-2; -1) are points on a Cartesian plane. C(2; 1) is the midpoint of AB. Also, F is a point such that AF = FB and  $AF \perp FB$ .



2.1 Determine the:

2.2

| 2.1.1 | Length of AE                                                                                                     | (2) |
|-------|------------------------------------------------------------------------------------------------------------------|-----|
| 2.1.2 | Gradient of AC                                                                                                   | (2) |
| 2.1.3 | Coordinates of B                                                                                                 | (3) |
| •     | ned to form a special quadrilateral AFBE. Name the special quadrilateral ive full justification for your answer. | (3) |


| 2.3 | Calculate the area of | ΔAFB. | (5)  |
|-----|-----------------------|-------|------|
|     |                       |       | [15] |

#### **QUESTION 3**

3.1 If  $x = 37^{\circ}$  and  $y = 44^{\circ}$ , calculate the value of  $\sin^2 x + 2\cos y$ . (1)

3.2 WITHOUT using a calculator, determine the value of  $\frac{\sin 30^\circ . \cot 45^\circ}{\cos 30^\circ . \tan 60^\circ}$  (3)

3.3 In the diagram below,  $\triangle ACD$  is right-angled at C. E lies on AD such that CE is perpendicular to AD.



| 3.3.1 | Write down the ratio for $\cos D$ in $\triangle ACD$ . | (1) |
|-------|--------------------------------------------------------|-----|
|       |                                                        |     |

- 3.3.2 Write down the ratio for  $\cos D$  in  $\triangle CED$ . (1)
  - 3.3.3 If AD = 13 units and DC = 5 units, calculate the length of ED. (2)
- 3.4 Given that  $\cos\theta = \frac{5}{13}$  and  $\sin\theta < 0$ .

With the aid of a diagram and WITHOUT using a calculator, determine the value of:

3.4.1  $\sin\theta$  (3)

3.4.2  $\sec \theta + \tan^2 \theta + 1$  (4)

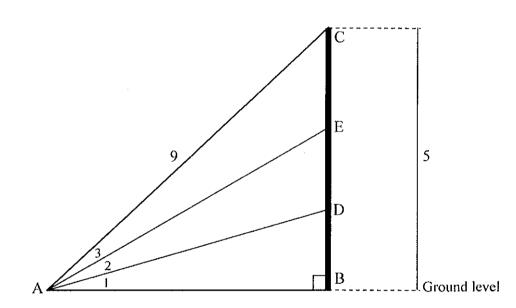
downloaded from Stanmorephysics.com

Copyright reserved



[15]

(3)


#### **QUESTION 4**

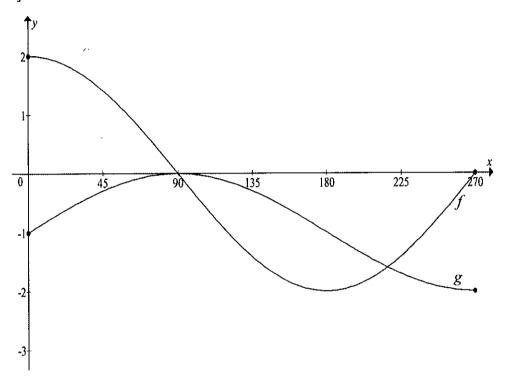
If  $0^{\circ} \le \theta \le 90^{\circ}$ , solve for  $\theta$  in each of the following questions: 4.1

4.1.1 
$$2\sin\theta + 1 = 1,28$$
 (2)

4.1.2 
$$\tan 2\theta = 4 \cot 60^{\circ}$$

In the diagram below, B is the foot of a multi-storey building. Three people, D, E 4.2 and C, are standing at the windows on three different floors. They are all looking at object A on the ground, which is in the same horizontal plane as B. AC = 9 units, BC = 5 units and  $\hat{A}_1 = \hat{A}_2 = \hat{A}_3$ .




Calculate the:

| 4.2.1 | Size of CÂB  | (2) |
|-------|--------------|-----|
| 4.2.2 | Length of AE | (5) |
| 4.2.3 | Length of DE | (4) |



#### **QUESTION 5**

Sketched below are the graphs of  $f(x) = 2\cos x$  and  $g(x) = \sin x - 1$  for the interval  $x \in [0^\circ; 270^\circ]$ .



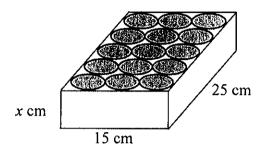
5.1 Write down the:

| 5.1.1 | Period of $f$ | (1) |
|-------|---------------|-----|
|-------|---------------|-----|

5.1.3 Number of solution(s) to f(x) = g(x) in the interval  $0^{\circ} \le x \le 270^{\circ}$  (1)

5.2 For which value(s) of x in the interval  $0^{\circ} \le x \le 270^{\circ}$  is  $f(x).g(x) \ge 0$ ? (2)

5.3 The graph h is obtained by reflecting graph g about the x-axis. Write down the coordinates of the minimum turning point of h in the interval  $0^{\circ} \le x \le 270^{\circ}$ . (2)


[8]

(2)

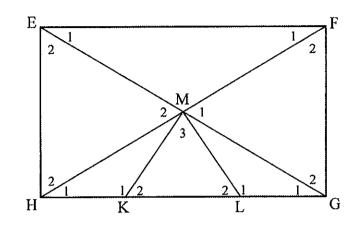


#### **QUESTION 6**

An open rectangular cardboard box has the following dimensions: length = 25 cm, breadth = 15 cm and height = x cm. The volume of the box is 3 000 cm<sup>3</sup>. Fifteen (15) identical cans of cold drink fit snugly into the box, as shown in the diagram below. The box and the cans are of equal height. (Ignore the thickness of the cardboard in your calculations.)



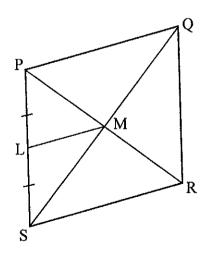
| 6.1 | Calculate the height of the box.                                                        | (3)        |
|-----|-----------------------------------------------------------------------------------------|------------|
| 6.2 | Calculate the radius of a can.                                                          | (2)        |
| 6.3 | If a can is filled to the top, calculate the volume of cold drink contained in the can. | (2)        |
| 6.4 | Calculate the volume of the space in between all the cans in the box.                   | (2)<br>[9] |




#### 9 CAPS - Grade 10

#### Give reasons for ALL geometry statements used in QUESTIONS 7 and 8.

#### **QUESTION 7**


In the diagram, EFGH is a rectangle having diagonals intersecting at M. 7.1  $\hat{M}_2 = 60^{\circ} \text{ and } \hat{L}_2 = 40^{\circ}.$ 



Calculate the size of:

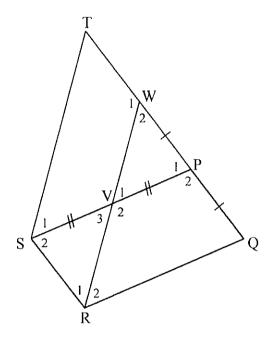
7.1.2

- $\hat{\mathbf{F}}_{\mathbf{1}}$ (2) 7.1.1 GÂL (3)
- PQRS is a rhombus with diagonals PR and SQ intersecting at M. The perimeter of 7.2 the rhombus is 12 cm. L is the midpoint of PS.



Calculate the length of LM.

(4) [9]




#### **QUESTION 8**

8.1 Complete the statement so that it is TRUE:

The diagonals of a parallelogram ... each other.

8.2 In the diagram below, P is the midpoint of side WQ of  $\Delta$ WQR. V is on WR such that VP||RQ. PV is produced by its own length to S. PW is produced to T and ST drawn.



| 8.2.1 | Give a   | reason why $WV = VR$ .                                             | (1)                  |
|-------|----------|--------------------------------------------------------------------|----------------------|
| 8.2.2 | Prove    | that:                                                              |                      |
|       | (a)      | $\Delta VWP = \Delta VRS$                                          | (3)                  |
|       | (b)      | SWPR is a parallelogram                                            | (2)                  |
|       | (c)      | PQRS is a parallelogram                                            | (3)                  |
| 8.2.3 | If it is | further given that RSTW is a parallelogram, show that $TQ = 3SR$ . | (2)<br>[ <b>12</b> ] |
| 1     | 1        |                                                                    |                      |

#### downloaded from Stanmorephysics.com 100

Copyright reserved

## 

(1)

## NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

## MATHEMATICS P2/WISKUNDE V2

## GRADE/GRAAD 10

### **NOVEMBER 2019**

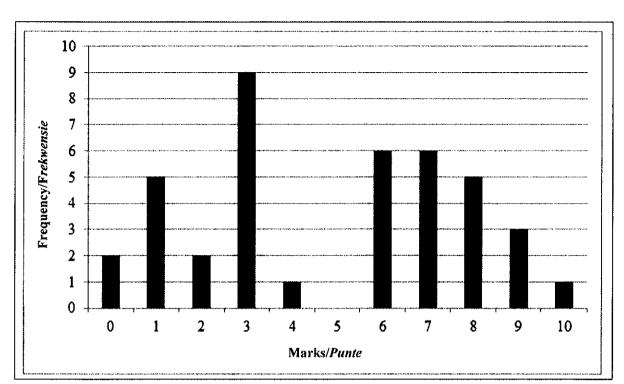
## SPECIAL ANSWER BOOK SPESIALE ANTWOORDEBOEK

| QUESTION<br>VRAAG               | MARK<br>PUNT                                                                                                   | INITIAL<br><i>PARAAF</i> | MODERATION<br>MODERERING | INITIAL<br><i>PARAAF</i> |
|---------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|
| 1                               |                                                                                                                |                          |                          |                          |
| 2                               |                                                                                                                |                          |                          |                          |
| 3                               |                                                                                                                |                          |                          |                          |
| 4                               |                                                                                                                |                          |                          |                          |
| 5                               |                                                                                                                |                          |                          |                          |
| 6                               |                                                                                                                |                          |                          |                          |
| 7                               |                                                                                                                |                          |                          |                          |
| 8                               | 0. De 10. De |                          |                          |                          |
| TOTAL<br><i>TOTAAL</i><br>(100) |                                                                                                                |                          |                          |                          |

This answer book consists of 15 pages. *Hierdie antwoordeboek bestaan uit 15 bladsye*.

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief


#### QUESTION/VRAAG 1

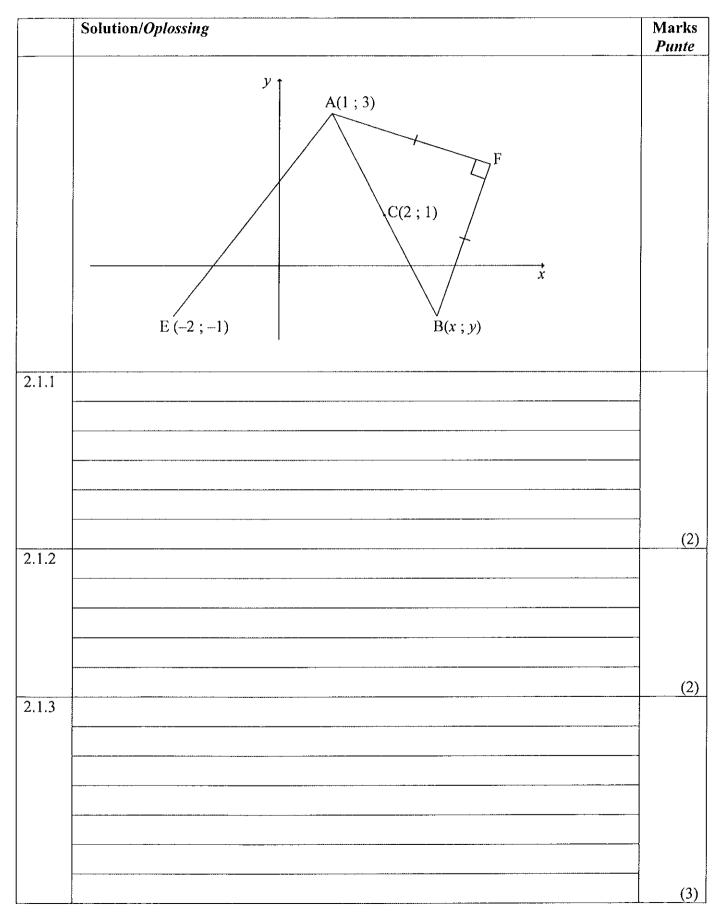
|       | Solution                                                                                                                                                | Oplos          | ssing |    |    |    |    |          |    |    |    |    |    |      |                                        | Marks<br><i>Punte</i> |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|----|----|----|----|----------|----|----|----|----|----|------|----------------------------------------|-----------------------|
|       |                                                                                                                                                         |                | 5     | 7  | 8  | 10 | 13 | 15       | 15 | 15 | 21 | 24 |    |      |                                        |                       |
|       |                                                                                                                                                         |                | 29    | 30 | 32 | 36 | 38 | 44       | 45 | 51 | 55 |    |    |      |                                        |                       |
|       |                                                                                                                                                         |                |       |    |    |    |    | -        |    |    |    | -  |    |      |                                        |                       |
| 1.1.1 |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        | (1)                   |
| 1.1.2 |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        |                       |
|       |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        | _                     |
|       | 1                                                                                                                                                       |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        | _                     |
| 1.1.3 |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        | (1)                   |
| 1.1.5 |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        |                       |
|       |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        | -                     |
|       |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        | _                     |
|       |                                                                                                                                                         |                |       |    |    |    |    | <u> </u> |    |    |    |    |    |      | ······································ | (3)                   |
| 1.1.4 |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        |                       |
|       |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        |                       |
|       |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        |                       |
|       | <u></u> | - <del> </del> |       |    |    |    |    |          |    |    |    |    |    | -1-1 |                                        |                       |
|       | 0                                                                                                                                                       | 5              | 10    | 15 | 20 | 25 | 3  | U        | 35 | 40 | 4: | )  | 50 | 55   | 00                                     |                       |
|       |                                                                                                                                                         |                |       |    |    |    |    |          |    |    |    |    |    |      |                                        | (2)                   |

downloaded from Stanmorephysics.com



Mathematics/P2/Wiskunde V2 3 CAPS/KABV - Grade/Graad 10 (Answer Book/Antwoordeboek)




| 12.1     (1)       12.2     (1)       12.3     (1)       12.4     (2)       12.4     (2)       12.5     (2)       12.5     (2)       (2)     (3)       (3)     (16) |       |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
|                                                                                                                                                                     | 1.2.1 | (1) |
|                                                                                                                                                                     | 1.2.2 |     |
| 1.2.4                                                                                                                                                               | 1.2.3 | (1) |
| 1.2.4                                                                                                                                                               |       |     |
| 1.2.4                                                                                                                                                               |       |     |
|                                                                                                                                                                     | 1.2.4 | (2) |
|                                                                                                                                                                     | 1.2.4 |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     | 1.2.5 | (2) |
|                                                                                                                                                                     | 1.2.5 |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       |     |
|                                                                                                                                                                     |       | (3) |
|                                                                                                                                                                     |       |     |

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

#### Mathematics/P2/Wiskynde V2 DBE/November 2019 DBE/November 2019

#### **QUESTION/VRAAG 2**



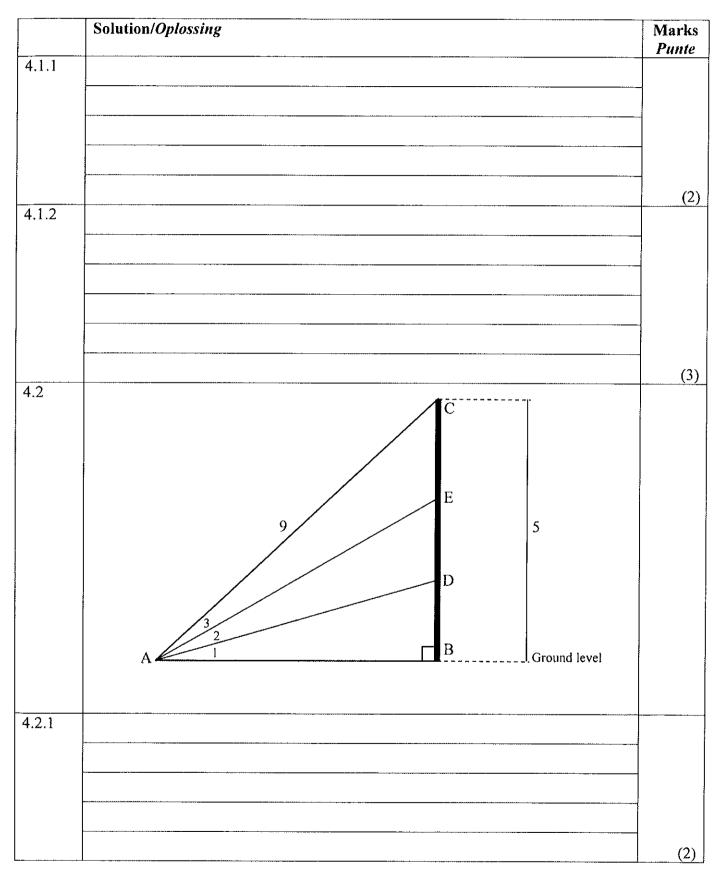


| 2.2 |   |             |
|-----|---|-------------|
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   | :           |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   | (2)         |
| 2.3 |   | (3)         |
| 2.5 |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   |             |
|     |   | (5)         |
|     |   | (5)<br>[15] |
|     | i | L_J         |

Copyright reserved/Kopiereg voorbehou



|       | Solution/Oplossing | Marks<br>Punte |
|-------|--------------------|----------------|
| 3.1   |                    |                |
| 3.2   |                    | (1)            |
|       |                    |                |
| 3.3   | E<br>1 2<br>A<br>C | (3)            |
| 3.3.1 |                    | (1)            |
| 3.3.2 |                    | (1)            |
| 3.3.3 |                    | (1)            |
|       |                    | (2)            |


Copyright reserved/Kopiereg voorbehou

7

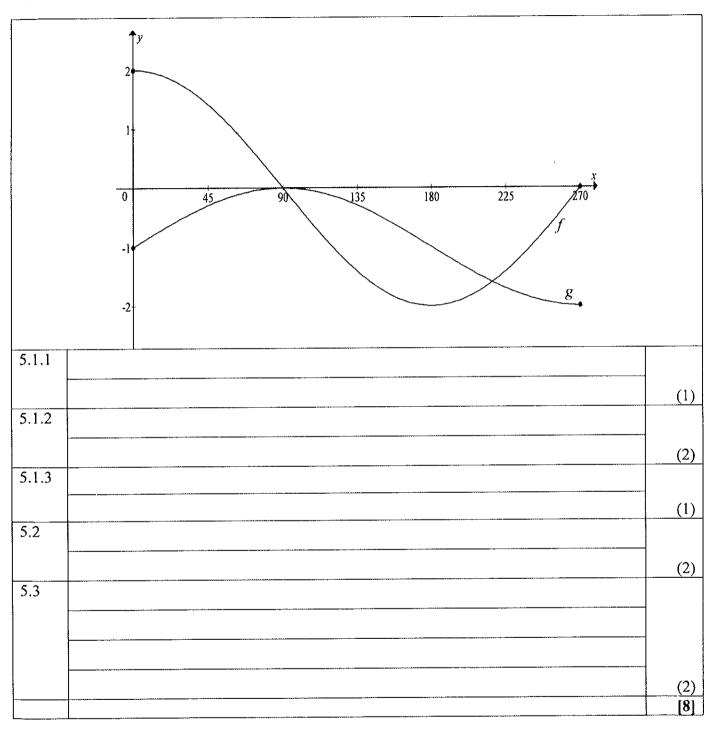
| 3.4.1 |      |
|-------|------|
| 5.4.1 |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       | (3)  |
| 3.4.2 |      |
| 5.4.2 |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       |      |
|       | (4)  |
|       | [15] |
| L     | 1.2  |
|       |      |



#### QUESTION/VRAAG 4






#### e V2 9 CAPS/KABV – Grade/Graad 10 (Answer Book/Antwoordeboek)

| 4.2.2 |             |
|-------|-------------|
|       |             |
| -     |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       | (5)         |
| 4.2.3 |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       |             |
|       | (4)<br>[16] |
|       | [16]        |

Copyright reserved/Kopiereg voorbehou



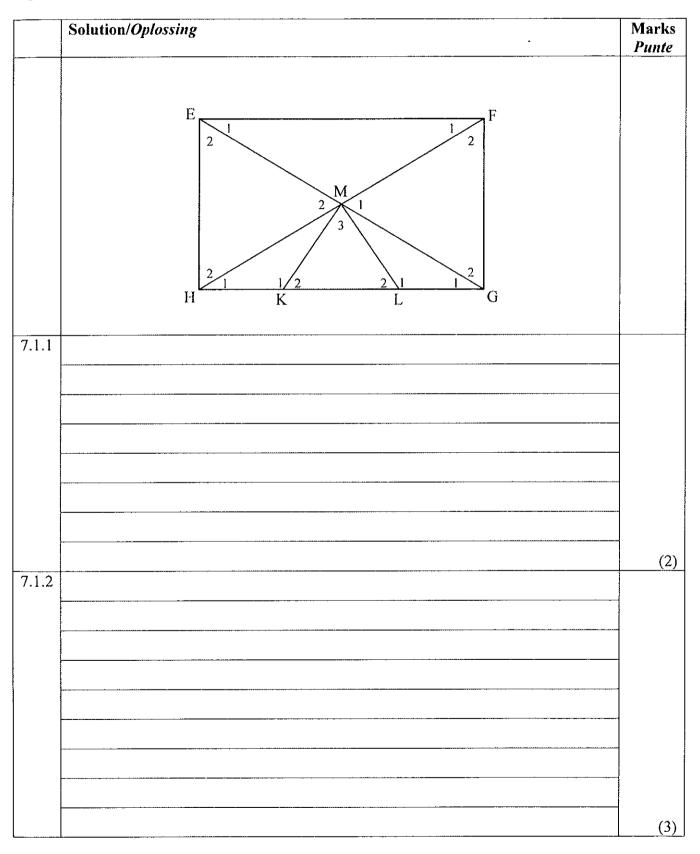
#### QUESTION/VRAAG 5



Copyright reserved/Kopiereg voorbehou



Please turn over/Blaai om asseblief

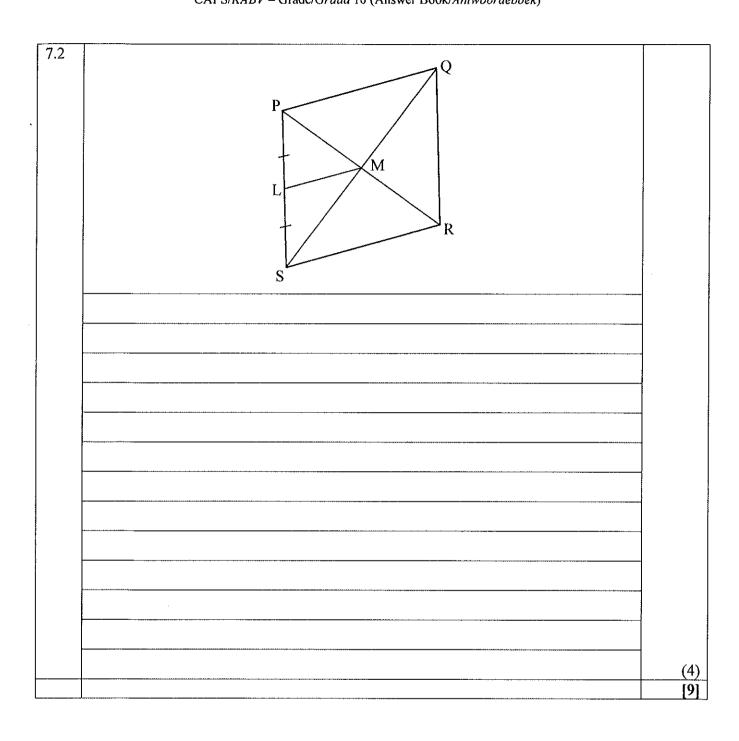

#### QUESTION/VRAAG 6

| 6.4                         | Soluti | on/Oplossing | Marks<br>Punte |
|-----------------------------|--------|--------------|----------------|
| 6.2         6.3         6.4 |        | x cm         |                |
| 6.2                         | 6.1    |              |                |
| 6.2                         |        |              |                |
| 6.3                         | 6.2    |              | (3)            |
| 6.4                         |        |              |                |
| 6.4                         | 6.3    |              | (2)            |
| 6.4                         |        |              |                |
|                             | 6.4    |              | (2)            |
|                             |        |              |                |
|                             |        |              | (2)            |



V2 12 CAPS/KABV – Grade/Graad 10 (Answer Book/Antwoordeboek)

#### **QUESTION/VRAAG7**




Copyright reserved/Kopiereg voorbehou



#### DBE/November 2019







#### QUESTION/VRAAG 8

|              | Solution/Oplossing                    | Marks<br>Punte |
|--------------|---------------------------------------|----------------|
| 8.1          |                                       | (1)            |
|              | r $r$ $r$ $r$ $r$ $r$ $r$ $r$ $r$ $r$ |                |
| 8.2.1        | R                                     |                |
|              |                                       | (1)            |
| 8.2.2<br>(a) |                                       |                |
|              |                                       | (3)            |
| 8.2.2<br>(b) |                                       |                |
| 8.2.2<br>(c) |                                       | (2)            |
|              |                                       |                |
|              |                                       | (3)            |

Copyright reserved/Kopiereg voorbehou



V2 15 CAPS/KABV – Grade/Graad 10 (Answer Book/Antwoordeboek)

| 8.2.3 |      |
|-------|------|
|       |      |
|       |      |
|       | (2)  |
|       | [12] |

TOTAL/TOTAAL: 100

#### ADDITIONAL SPACE/BYKOMENDE RUIMTE

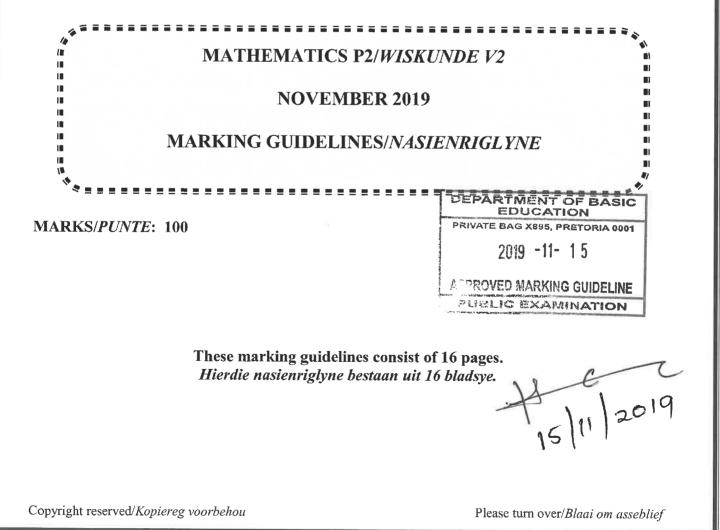
| <br>I |  |
|-------|--|

Copyright reserved/Kopiereg voorbehou



.

### Downloaded from Stanmorephysics.com




## basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA** 

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 10



#### NOTE:

- If a candidate answer a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is unacceptable.

#### LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, sien die deurgehaalde antwoord na.
- Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.
- Dit is onaanvaarbaar om waardes/antwoorde te veronderstel om 'n probleem op te los.

#### QUESTION/VRAAG 1

| 1.1.1 | 15 is the mode/is die modus                                                                                                                                                        | ✓answer/antwoord (1)                                                           |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1.1.2 | Position of the median: $\frac{n+1}{2} = 10^{th}$ position<br>median = 24<br>Posisie van die mediaan = $\frac{n+1}{2}$<br>Answer only: full marks<br>=10de posisie<br>mediaan = 24 | ✓ answer/antwoord (1)                                                          |
| 1.1.3 | Interquartile range $= Q_3 - Q_1$<br>= 38 - 13<br>= 25<br>Variasiewydte $= Q_3 - Q_1$<br>= 38 - 13<br>= 25<br>Answer only: full marks<br>= 38 - 13<br>= 25                         | ✓ Q <sub>3</sub><br>✓ Q <sub>1</sub><br>✓ answer/ <i>antwoord</i> (3)          |
| 1.1.4 | 5         10         15         20         25         30         35         40         45         50         55                                                                    | ✓box/mond<br>CA from 1.1.2 and<br>1.1.3<br>✓whiskers/snor<br>(accuracy)<br>(2) |
| L     | DEPARTMENT OF BASIC<br>EDUCATION<br>PRIVATE BAG X895, PRETORIA 0001<br>2019 -11- 1 5<br>APPROVED MARKING GUIDELINE<br>PUBLIC EXAMINATION                                           |                                                                                |

### Math Datwinkowaded/verom Stanmorephysics.com

DBE/November 2019

|       | CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienrigly                                                   | ne                                        |
|-------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1.2.1 | 5 learners/leerders                                                                                           | $\checkmark$ answer/antwoord (1)          |
| 1.2.2 | 40 learners/leerders                                                                                          | ✓ answer/antwoord (1)                     |
| 1.2.3 | Range = max value - min value                                                                                 |                                           |
|       | = 10 - 0                                                                                                      | $\checkmark$ min and max/min en           |
|       | = 10 Answer only: full marks                                                                                  | <i>maks</i> ✓ answer/ <i>antwoord</i> (2) |
|       | Varisasiewydte = maks waarde – min waarde                                                                     |                                           |
|       | =10-0                                                                                                         |                                           |
|       | =10                                                                                                           |                                           |
| 1.2.4 | Number of learners/ <i>Getal leerders</i> $= 1 + 9 + 2 + 5 + 2$                                               |                                           |
|       | = 19                                                                                                          | √no. of learners/getal leerders           |
|       | Percentage / Persentasie $=\frac{19}{40} \times 100$<br>= 47,5%                                               | ✓ answer/antwoord (2)                     |
|       | Answer only: full marks                                                                                       |                                           |
| 1.2.5 | $\overline{x} = \frac{(0 \times 2) + (1 \times 5) + (2 \times 2) + (3 \times 9) + \dots + (10 \times 1)}{10}$ |                                           |
|       | $\overline{x} = \frac{195}{40}$                                                                               | ✓195<br>✓40                               |
|       | $\overline{x} = \frac{39}{8}$                                                                                 |                                           |
|       | $\overline{x} = 4,88$                                                                                         | $\checkmark$ answer/antwoord (3)          |
|       |                                                                                                               | [16]                                      |

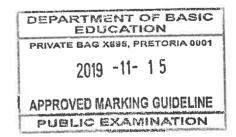
| And in case of the local division of the loc |      | ~ ~ | · · · · · · · · · · · · · · · · · · · | 16 | F BAS  |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|---------------------------------------|----|--------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     | -11-                                  |    |        | . <b></b> |
| APPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OVED | MA  | RKIN                                  | GG | UDELIN | 12        |
| pu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BLIC | E:  | XAM                                   | IN | ATION  |           |

#### 4

CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

#### QUESTION/VRAAG 2

| 2.1.1 | AE = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$<br>= $\sqrt{(1 + 2)^2 + (3 + 1)^2}$<br>= 5 units<br>Answer only: max. 1/2                       | ✓ substitution/<br><i>vervanging</i><br>✓ answer/ <i>antwoord</i>                                        | (2) |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|
| 2.1.2 | $m_{AC} = \frac{y_2 - y_1}{x_2 - x_1}$<br>= $\frac{3 - 1}{1 - 2}$<br>= $-2$ Answer only: max. 1/2                                           | ✓ substitution/<br><i>vervanging</i><br>✓ answer/ <i>antwoord</i>                                        | (2) |
| 2.1.3 | $x_{C} = \frac{x_{A} + x_{B}}{2}$ $y_{C} = \frac{y_{A} + y_{B}}{2}$ $2 = \frac{1 + x}{2}$ $x = 3$ $B(3; -1)$ $y = -1$ Answer only: max. 3/3 | <ul> <li>✓ substitution/<br/>vervanging</li> <li>✓ x-value/-waarde</li> <li>✓ y-value/-waarde</li> </ul> | (3) |
|       | $(x_A; y_A) \to (x_C; y_C)  [(x+1); (y-2)]$<br>$\therefore (x_C; y_C) \to (x_B; y_B)  \text{by symmetry}$<br>$\therefore B(3; -1)$          | ✓ symmetry/<br>simmetrie<br>✓ x-value/-waarde<br>✓ y-value/-waarde                                       |     |


| DE  | PARTMENT OF BASIC<br>EDUCATION |
|-----|--------------------------------|
| PRI | VATE BAG X895, PRETORIA 0001   |
|     | 2019 -11- 1 5                  |
| APP | ROVED MARKING GUIDELINE        |
| PL  | BLIC EXAMINATION               |

## Mattenumbeded/verom Stanmorephysics.com

| r   | CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienrigi                                                                                                                                                         | lyne                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 2.2 | BE = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$<br>= $\sqrt{(3 + 2)^2 + (-1 + 1)^2}$<br>= 5units<br><i>OR/OF</i>                                                                                                       | ✓BE                                                                                                             |
|     | BE=3+2 (horizontal line/horisontale lyn)<br>=5units<br>BE = AE and/en AF = BF<br>∴ AFBE is a kite/is 'n vlieër<br>(2 adj. sides = but opp. sides not equal/<br>2 aangr. sye = maar teenoorg. sye is nie gelyk nie) | <ul> <li>✓ kite/vlieër</li> <li>✓ justification/</li> <li>regverdiging (3)</li> </ul>                           |
|     | <b>OR/OF</b><br>$m_{EF} = \frac{1}{2} \rightarrow AB$ is perpendicular to <i>EF</i> and <i>C</i> is the midpoint<br>$\therefore AFBE$ is a kite (Longer diag. bisects the shorter diag. at 90°                     | $\checkmark m_{EF} = \frac{1}{2}$ $\checkmark kite/vlie \ddot{e}r$ $\checkmark justification/$ regverdiging (3) |
| 2.3 | AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$<br>= $\sqrt{(3 - 1)^2 + (-1 - 3)^2}$<br>= $2\sqrt{5}$ units<br>∴ AC = $\sqrt{5}$ units<br>In $\triangle$ ACF                                                           | ✓AB                                                                                                             |
|     | $\hat{A} = 45^{\circ}$ $\tan 45^{\circ} = \frac{CF}{\sqrt{5}}$ $CF = \sqrt{5} \text{ units}$ $Area = \frac{1}{2} \times AB \times CF$                                                                              | ✓ratio/ <i>verhouding</i><br>✓CF                                                                                |
|     | $=\frac{1}{2} \times 2\sqrt{5} \times \sqrt{5}$ $= 5 \text{ units}^2$                                                                                                                                              | ✓ substitution/<br><i>vervanging</i><br>✓ answer/ <i>antwoord</i> (5)                                           |
|     | DEPARTMENT OF BASIC<br>EDUCATION<br>PRIVATE BAG X895, PRETORIA 90001<br>2019 -11- 15<br>APPROVED MARKING GUIDELINE<br>PUBLIC EXAMINATION                                                                           |                                                                                                                 |
|     |                                                                                                                                                                                                                    |                                                                                                                 |

.

| CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienrigl                          | yne                                             |
|-------------------------------------------------------------------------------------|-------------------------------------------------|
| OR/OF                                                                               |                                                 |
| $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                         |                                                 |
| $=\sqrt{(3-1)^2+(-1-3)^2}$                                                          |                                                 |
| $= 2\sqrt{5}$ units                                                                 | ✓ AB                                            |
| In $\triangle AFB$ : $F\hat{B}A = F\hat{B}A = 45^{\circ}$ ( $\angle sopp = sides$ ) | $\checkmark F\hat{A}B = F\hat{B}A = 45^{\circ}$ |
|                                                                                     |                                                 |
| $sin45^\circ = \frac{AF}{AB} = \frac{AF}{2\sqrt{5}}$                                | √ratio                                          |
| $3in43 - \frac{1}{AB} - \frac{1}{2\sqrt{5}}$                                        | 10000                                           |
| $AF = \sqrt{10}$                                                                    |                                                 |
| $AF = BF = \sqrt{10}$                                                               |                                                 |
| Area of $\triangle AFB = \frac{1}{2}\sqrt{10}.\sqrt{10}$                            | ✓ substitution/                                 |
|                                                                                     | vervanging                                      |
| = 5units <sup>2</sup>                                                               | $\checkmark$ answer/ <i>antwoord</i> (5)        |
|                                                                                     |                                                 |
| OR / OF                                                                             |                                                 |
|                                                                                     |                                                 |
| AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                         |                                                 |
|                                                                                     |                                                 |
| $=\sqrt{(3-1)^2+(-1-3)^2}$                                                          |                                                 |
| $= 2\sqrt{5}$ cm                                                                    | ✓AB                                             |
| In $\triangle AFB$ : $AF = BF$ (given)                                              |                                                 |
| $AB^2 = BF^2 + BF^2$                                                                |                                                 |
|                                                                                     | ✓ Pythagoras theorem                            |
| $BF = \sqrt{\frac{20}{2}}$                                                          | /stelling van Pythagoras                        |
| 1 -                                                                                 |                                                 |
| $BF = \sqrt{10}$                                                                    |                                                 |
|                                                                                     | ✓BF                                             |
| Area of $\triangle AFB = \frac{1}{2}\sqrt{10}.\sqrt{10}$                            |                                                 |
| =5 units <sup>2</sup>                                                               | ✓ substitution/                                 |
|                                                                                     | vervanging                                      |
|                                                                                     | ✓ answer/ <i>antwoord</i> (5)                   |
|                                                                                     | [15]                                            |




## Math Dawy Portage / VErom Stanmorephysics.com CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasienriglyne

#### QUESTION/VRAAG 3

| 3.1   | $\sin^2 x + 2\cos y$                                                                                      |                                                            |                                                   |
|-------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|
|       | $= \sin^2 37^\circ + 2\cos 44^\circ$                                                                      |                                                            |                                                   |
|       | = 1,80                                                                                                    | Answer only: full marks                                    | ✓answer/antwoord (1)                              |
| 3.2   | $\frac{\sin 30^\circ . \cot 45^\circ}{200}$                                                               |                                                            | $\checkmark \frac{1}{2}$ and/ <i>en</i> 1         |
|       | $\cos 30^{\circ} \cdot \tan 60^{\circ}$ $= \frac{\frac{1}{2} \cdot 1}{\frac{\sqrt{3}}{2} \cdot \sqrt{3}}$ |                                                            | $\checkmark \frac{\sqrt{3}}{2}$ and/en $\sqrt{3}$ |
|       | $\begin{vmatrix} \frac{\sqrt{3}}{2} \sqrt{3} \\ = \frac{1}{2} \end{vmatrix}$                              | Answer only: max. 1/3                                      | $\checkmark$ answer/ <i>antwoord</i> (3)          |
|       | $=\frac{1}{3}$                                                                                            |                                                            |                                                   |
| 3.3.1 | In $\triangle$ ACD, $\cos D = \frac{CD}{AD}$                                                              |                                                            | $\checkmark$ answer/antwoord (1)                  |
| 3.3.2 | In $\triangle$ CDE, cos D = $\frac{DE}{CD}$                                                               |                                                            | ✓ answer/antwoord (1)                             |
| 3.3.3 | $\frac{\text{CD}}{\text{AD}} = \frac{\text{DE}}{\text{CD}}$ both/beide=                                   | $= \cos D$                                                 | ✓ equating/<br>gelykstelling                      |
|       | $ED = \frac{CD^{2}}{AD}$ $ED = \frac{25}{13}$ $ED = 1,92 \text{ units/eenhede}$                           |                                                            | ✓ answer/antwoord (2)                             |
|       | OR/OF                                                                                                     |                                                            |                                                   |
|       | $\cos D = \frac{\text{CD}}{\text{AD}}$ $= \frac{5}{12}$                                                   |                                                            |                                                   |
|       | $\hat{D} = 67,38^{\circ}$                                                                                 |                                                            | $\checkmark \hat{D} = 67,38^{\circ}$              |
|       | $\cos 67,38^\circ = \frac{\text{ED}}{5}$                                                                  |                                                            | ✓ answer/ <i>antwoord</i>                         |
|       | ED = 1,92 units/eenhede                                                                                   |                                                            | (2)                                               |
|       |                                                                                                           | DEPARTMENT OF BA<br>EDUCATION<br>PRIVATE BAG X895, PRETORI | ASIC                                              |
|       |                                                                                                           | 2019 -11- 1 5                                              |                                                   |
|       |                                                                                                           | APPROVED MARKING GUID                                      | Lannad Ch.1 & Ch.1 auto 154                       |
|       | 31<br>                                                                                                    | PUBLIC EXAMINAT                                            | N STATE                                           |

.

|       | CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienrig                                                                         | lyne                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 3.4.1 | θ<br>(5;-12)                                                                                                                      | √ diagram in correct<br>quadrant                                       |
|       | $\cos \theta = \frac{5}{13}$<br>$y^{2} = r^{2} - x^{2}$<br>$= (13)^{2} - (5)^{2}$<br>= 144                                        |                                                                        |
|       | y = -12 (in the 4th quad/in 4de kwad)<br>∴ $\sin\theta = -\frac{12}{13}$                                                          | √y-value/-waarde                                                       |
|       |                                                                                                                                   | $\checkmark$ answer/antwoord (3)                                       |
| 3.4.2 | $\sec \theta + \tan^2 \theta + 1$<br>= $\frac{13}{5} + \left(\frac{-12}{5}\right)^2 + 1$<br>= $\frac{13}{5} + \frac{144}{25} + 1$ | $\sqrt{\frac{13}{5}}$ $\sqrt{\frac{-12}{5}}$                           |
|       | $=\frac{234}{25}$                                                                                                                 | $\begin{array}{c} \checkmark 234 \\ \checkmark 25 \end{array} \tag{4}$ |
|       |                                                                                                                                   | [15]                                                                   |



# Math Data Macher From Stanmorephysics.com CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienriglyne

DBE/November 2019

#### QUESTION/VRAAG4

| 4.1.1 | $2\sin\theta + 1 = 1,28$<br>$2\sin\theta = 0,28$<br>$\sin\theta = 0,14$<br>$\theta = 8,05^{\circ}$                                                   | Penalty for incorrect<br>rounding in this question<br><b>only</b> . | ✓ simplification/<br><i>vereenvoudiging</i><br>✓ answer/ <i>antwoord</i>            | (2) |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----|
| 4.1.2 | $\tan 2\theta = 4 \cot 60^{\circ}$ $\tan 2\theta = \frac{4}{\sqrt{3}}$ $2\theta = 66,5867^{\circ}$ $\theta = 33,29^{\circ}$                          |                                                                     | $\checkmark \frac{4}{\sqrt{3}}$<br>\$\sigma 66,5867°<br>\$\sigma \answer/antwoord\$ | (3) |
| 4.2.1 | In $\triangle ABC$<br>$\sin A = \frac{BC}{AC} = \frac{5}{9}$<br>$C\hat{A}B = 33,75^{\circ}$<br><b>OR/OF</b><br>$AB = 2\sqrt{14}$ (Pythagoras theorem | n)/stelling van Pythagoras                                          | ✓ ratio/ <i>verhouding</i><br>✓ answer/ <i>antwoord</i>                             | (2) |
|       | $\cos A = \frac{2\sqrt{14}}{9}$ $A = 33,75^{0}$ <b>OR/OF</b>                                                                                         |                                                                     | ✓ ratio/ <i>verhouding</i><br>✓ answer/ <i>antwoord</i>                             | (2) |
|       | $\tan A = \frac{5}{2\sqrt{14}}$ $A = 33,75^{\circ}$                                                                                                  |                                                                     | ✓ ratio/ <i>verhouding</i><br>✓ answer/ <i>antwoord</i>                             | (2) |

|       | DEPARTMENT OF BASIC             |
|-------|---------------------------------|
|       | PRIVATE BAG X895, PRETORIA 0001 |
| -     | 2019 -11- 15                    |
| - And | APPROVED MARKING GUIDELINE      |
|       | PUBLIC EXAMINATION              |

| 4.2.2 | Finding AB:                                                               |                           |
|-------|---------------------------------------------------------------------------|---------------------------|
|       | $\sqrt{9^2-5^2} = 7,48$ units/eenhede                                     | √AB                       |
|       | OR / OF                                                                   |                           |
|       | In $\triangle ABC$ : $\cos \hat{A} = \frac{AB}{9}$                        |                           |
|       | $AB = \cos 33,75^{\circ} \times 9$                                        |                           |
|       | AB = 7,48  units/eenhede                                                  | ✓AB                       |
|       | OR/OF                                                                     |                           |
|       |                                                                           |                           |
|       | BC = 5units                                                               |                           |
|       | $AB = \frac{5}{\tan 33,75^{\circ}}$                                       |                           |
|       | $\tan 33, 75^\circ$<br>= 7,48 units/ <i>eenhede</i>                       |                           |
|       | - 7,40 units/eenneue                                                      |                           |
|       | :. In $\triangle AEB$ : $\hat{A}_1 + \hat{A}_2 + \hat{A}_3 = 33,75^\circ$ |                           |
|       | $\therefore \hat{A}_1 + \hat{A}_2 = B\hat{A}E = 22,50^\circ$              | $\checkmark$ BÂE = 22,50° |
|       | $\cos \hat{A} = \frac{AB}{AE}$                                            | ✓ratio/verhouding         |
|       | $\cos 22,5^\circ = \frac{7,48}{AE}$                                       |                           |
|       | AE = 8,096                                                                | ✓ substitution/           |
|       |                                                                           | vervanging                |
|       | AE = 8,10                                                                 | ✓AE (5)                   |

| D  | EPARTMENT OF BASIC<br>EDUCATION |
|----|---------------------------------|
| PF | RIVATE BAG X895, PRETORIA 0001  |
|    | 2019 -11- 1 5                   |
| AP | PROVED MARKING GUIDELINE        |
| P  | UBLIC EXAMINATION               |

#### DBE/November 2019

## Math Dawy hora ded / From Stanmorephysics.com

|       | CAPS/KABV – Grade/Graad 10 – N                       | Marking Guidelines/Nasienrig | lyne              |      |
|-------|------------------------------------------------------|------------------------------|-------------------|------|
| 4.2.3 | In ⊿ABE                                              |                              |                   |      |
|       | $\mathbf{BE} = \sqrt{\mathbf{AE}^2 - \mathbf{AB}^2}$ |                              |                   |      |
|       | $=\sqrt{(8,1)^2-(7,48)^2}$                           |                              |                   |      |
|       | = 3,11                                               |                              | ✓BE               |      |
|       | OR/OF                                                |                              |                   |      |
|       | $BE = sin22, 5^{\circ} \times 8, 10 = 3, 10$         |                              |                   |      |
|       | OR/OF                                                |                              |                   |      |
|       | $BE = tan22,5^{\circ} \times 7,48 = 3,10$            |                              |                   |      |
|       | In ⊿ABD                                              |                              |                   |      |
|       | $\tan 11,25^{\circ} = \frac{\text{DB}}{\text{AB}}$   |                              |                   |      |
|       | $\therefore \text{DB} = \tan 11,25 \times 7,48$      |                              |                   |      |
|       | DB =1,49                                             |                              | ✓DB               |      |
|       | DE = BE - DB                                         |                              | ✓ BE – DB         |      |
|       | =3,10-1,49 or                                        | 3,11-1,49                    | A RF - DR         |      |
|       | =1,61 units/eenhede                                  | =1,62 units/eenhede          | ✓ answer/antwoord | (4)  |
|       |                                                      |                              |                   | [16] |

| DEP   | ARTMENT OF BASIC<br>EDUCATION |
|-------|-------------------------------|
| PRIVA | TE BAG X895, PRETORIA 0001    |
|       | 2019 -11- 1 5                 |
| APPRO | VED MARKING GUIDELINE         |
| PUE   | LIG EXAMINATION               |

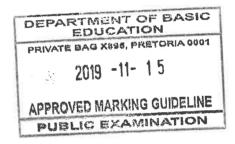
#### 12

CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienriglyne

#### QUESTION/VRAAG 5

| 5.1.1 | Period of/Periode van $f: 360^{\circ}$                                             | √answer/antwoord                            |  |
|-------|------------------------------------------------------------------------------------|---------------------------------------------|--|
|       |                                                                                    | (1)                                         |  |
| 5.1.2 | Range of/ <i>Waardeversameling van</i> $g: -2 \le y \le 0$ or/of $y \in [-2; 0]$   | ✓ critical values/                          |  |
|       |                                                                                    | kritieke waardes                            |  |
|       |                                                                                    | ✓ notation/antwoord                         |  |
|       |                                                                                    | (2)                                         |  |
| 5.1.3 | 2 solutions/oplossings                                                             | ✓ answer/antwoord(1)                        |  |
| 5.2   | $90^{\circ} \le x \le 270^{\circ} \text{ or/}of \ x \in [90^{\circ}; 270^{\circ}]$ | ✓ critical values/                          |  |
|       |                                                                                    | kritieke waardes                            |  |
|       |                                                                                    | $\checkmark$ notation (2)                   |  |
| 5.3   | $h(x) = -\sin x + 1$                                                               |                                             |  |
|       | Minimum T.P/ $Draaipunt = (90; 0)$                                                 | $\checkmark \checkmark (90^{\circ}; 0)$ (2) |  |
|       |                                                                                    | (accuracy marks)                            |  |
|       |                                                                                    | [8]                                         |  |

#### QUESTION/VRAAG 6


| 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume of the box/van houer = $L \times B \times H$                                                                                            | ✓ formula/ <i>formule</i>                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3000 = 25 \times 15 \times x$                                                                                                                 | ✓ substitution/                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3000                                                                                                                                           | vervanging                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $x = \frac{3000}{375}$                                                                                                                         |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x = 8  cm                                                                                                                                      |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The height of the box/ <i>hoogte van houer</i> = 8 cm                                                                                          | $\checkmark$ answer/antwoord (3)         |
| 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The diameter of each can is 5 cm./                                                                                                             | (-)                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Die diameter van elke blikkie is 5 cm.                                                                                                         | √diameter                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The radius of each can is 2,5 cm./                                                                                                             |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Die radius van elke blikkie is 2,5 cm.                                                                                                         | $\checkmark$ answer/ <i>antwoord</i> (2) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Answer only: full marks                                                                                                                        | (-)                                      |
| 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume of drink in a can/van koeldrank in blikkie = $\pi r^2 h$                                                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $=\pi(2,5)^{2}(8)$                                                                                                                             |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $=\pi(2,5)^{2}(8)$                                                                                                                             | ✓ substitution into correct formula/     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 157,08 \text{ cm}^3$                                                                                                                        | vervanging                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 137,08 cm                                                                                                                                    | √answer/antwoord                         |
| <i>c</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                | (2)                                      |
| 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume of the remaining space = V of the box – V of the 15 cans/<br>Volume van oorblywende spasie = V van die houer – V van die<br>15 blikkies |                                          |
| DED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000 (15 157.00)                                                                                                                               | ✓15×157,08                               |
| A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE | $= 3000 - (15 \times 157,08) = 3000 - 2356,20$                                                                                                 | ✓ answer/antwoord                        |
| PRIVAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 643,80 \text{ cm}^3$                                                                                                                        | (2)                                      |
| 1.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2040 11 4 5                                                                                                                                    | [9]                                      |

Copyright reserved Kopiereg Add Behou

## Math Dawy Prograd And / The Company Stanmore physics. Com CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienriglyne

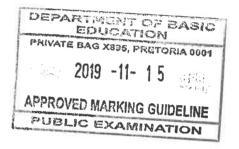
| $E\hat{M}F = 120^{\circ} (\angle s \text{ on straight line}/op reguitlyn)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓ S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\hat{F}_1 = \hat{E}_1 = 30^\circ$ ( $\angle$ 's opp. = sides OR diag.of a rectangle = and bisect each other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ S/R (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OR/OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\hat{F}_1 = \hat{E}_1$ (angles opp. = sides OR diag. of a rectangle = and bisect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| each other).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\widehat{M}_2 = \widehat{E}_1 + \widehat{F}_1 \text{ (ext. angle of } \Delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $60^{\circ} = \hat{E}_1 + \hat{F}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ✓ answer/antwoord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\therefore \hat{F}_1 = 30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\hat{\mathbf{E}}_1 = \hat{\mathbf{G}}_1 = 30^{\circ}  (\text{Alt.} \angle \mathbf{'s} : \text{EF} \parallel \text{HG})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓ S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\hat{L}_2 = \hat{G}_1 + \hat{GML} \text{ (ext. } \angle = \text{ sum of two opp. int. } \angle \text{'s)}$ $40^\circ = 30^\circ + \hat{GML}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | √S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\hat{GML} = 10^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓ answer/ <i>antwoord</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $OR/OF$ $\widehat{M}_{1} = 60^{\circ}  (vert. opp. angles)$ $\therefore \widehat{G}_{2} = \widehat{F}_{2} = 60^{\circ}  (angles opp. = sides)$ But $\widehat{G}_{2} + \widehat{G}_{1} = 90^{\circ}  (angles of rectangle)$ $\widehat{G}_{1} = 30^{\circ}$ $\widehat{L}_{2} = \widehat{G}_{1} + G\widehat{M}L  (ext. angle of \Delta)$ $40^{\circ} = 30^{\circ} + G\widehat{M}L$ $G\widehat{M}L = 10^{\circ}$ $OR/OF$ $\widehat{G}_{1} = \widehat{E}_{1} = 30^{\circ}  (alt. angle EF  HG)$ $\widehat{L}_{2} = 40^{\circ}  (given)$ $\widehat{L}_{1} = 180 - 40^{\circ} = 140^{\circ}  (angles in str. line)$ $G\widehat{M}L = 180^{\circ} - 140^{\circ} - 30$ | (3)<br>$\sqrt{\hat{G}_1} = 30^\circ$<br>$\sqrt{S/R}$<br>$\sqrt{answer/antwoord}$<br>(3)<br>$\sqrt{\hat{G}_1} = 30^\circ$<br>$\sqrt{S/R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | each other).<br><b>OR/OF</b><br>$\hat{f}_1 = \hat{f}_1$ (angles opp. = sides OR diag. of a rectangle = and bisect<br>each other).<br>$\hat{M}_2 = \hat{f}_1 + \hat{f}_1$ (ext. angle of $\Delta$ )<br>$60^\circ = \hat{f}_1 + \hat{f}_1$ (ext. angle of $\Delta$ )<br>$60^\circ = \hat{f}_1 + \hat{f}_1$<br>$\therefore \hat{f}_1 = 30^\circ$<br>$\hat{f}_1 = \hat{G}_1 = 30^\circ (Alt. \angle 's: EF \parallel HG)$<br>$\hat{L}_2 = \hat{G}_1 + G\hat{M}L$ (ext. $\angle =$ sum of two opp. int. $\angle 's$ )<br>$40^\circ = 30^\circ + G\hat{M}L$<br>$G\hat{M}L = 10^\circ$<br><b>OR/OF</b><br>$\hat{M}_1 = 60^\circ$ (vert. opp. angles)<br>$\therefore \hat{G}_2 = \hat{f}_2 = 60^\circ$ (angles of rectangle)<br>$\hat{G}_1 = 30^\circ$ (argles of rectangle)<br>$\hat{G}_1 = 30^\circ + G\hat{M}L$ (ext. angle of $\Delta$ )<br>$40^\circ = 30^\circ + G\hat{M}L$ (ext. angle of $\Delta$ )<br>$40^\circ = 30^\circ + G\hat{M}L$<br>$G\hat{M}L = 10^\circ$<br><b>OR/OF</b><br>$\hat{G}_1 = \hat{f}_1 = 30^\circ$ (alt. angle EF  HG)<br>$\hat{L}_2 = 40^\circ$ (given)<br>$\hat{L}_1 = 180 - 40^\circ = 140^\circ$ (angles in str. line) |

| Mathemati | ics/P2/Wiskunde/V2 14<br>CAPS/KABY_Grade/Grad 10_Marking Guidelings/Maria                                                                                                                                                                                                                                                                                 | DBE/November 2019                                                         |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 7.2       | CAPS/KABV - Grade/Graad 10 - Marking Guidelines/Nasie<br>Perimeter of/Omtrek van PQRS = 12 cm<br>One side/Een sy = $\frac{12}{4}$ = 3 cm<br>∴ SR = 3cm<br>PM = MR (diag. of rhombus/rombus (ruit) PQRS)<br>PL = LS (given/gegee)<br>In ΔPSR<br>LM = $\frac{1}{2}$ SR (Midpoint thm/Middelpuntstelling)<br>= $\frac{1}{2}$ (3)<br>= $\frac{3}{2}$ = 1,5 cm | enriglyne<br>✓ SR=PQ=QR=PS<br>=3cm<br>✓ S/R<br>✓ S/R<br>✓ answer/antwoord |
|           |                                                                                                                                                                                                                                                                                                                                                           | (4)                                                                       |



.

#### QUESTION/VRAAG 8


| 8.1         | Bisect/Halveer mekaar                                                                                                                                                                                                                   | ✓ answer/ <i>ar</i> |     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|
| 8.2.1       | A line drawn from the midpoint of one side of a triangle parallel to<br>another side bisects the third side./'n Lyn wat van die middelpunt<br>van een sy van 'n driehoek parallel aan 'n ander sy getrek word,<br>halveer die derde sy. | √R                  | (1) |
|             | OR/OF                                                                                                                                                                                                                                   |                     |     |
| 8 2 2 (-)   | Midpoint theorem                                                                                                                                                                                                                        | ✓R                  | (1) |
| 8.2.2 (a)   | In $\Delta VWP \equiv \Delta VRS$<br>1. $WV = VR$ (proved/bewys)                                                                                                                                                                        | √S                  |     |
|             | 2. VP = SV (given/gegee)                                                                                                                                                                                                                |                     |     |
|             | 3. $\hat{V}_1 = \hat{V}_3$ (vert. opp ∠s)<br>∴ $\Delta VWP \equiv \Delta VRS$ (SAS)                                                                                                                                                     | ✓S/R<br>✓ R         | (3) |
| 8.2.2(b)    | WV = VR (proved/bewys)                                                                                                                                                                                                                  | √S                  |     |
|             | VP = SV (given/gegee)                                                                                                                                                                                                                   |                     |     |
|             | $\therefore$ SWPR is a/' n // <sup>m</sup> (diagonals bisect each other/                                                                                                                                                                | ✓R                  | (2) |
|             | hoeklyne halveer mekaar)                                                                                                                                                                                                                |                     |     |
| 8.2.2(c)    | PQ  SR       (WP    SR OR/OF proved OR/OF same str. line as WP)         CD    D O       (MP    SR OR/OF proved OR/OF same str. line as WP)                                                                                              | √S √R               |     |
|             | SP    RQ (given/gegee)                                                                                                                                                                                                                  |                     |     |
|             | .: PQRS is a parallelogram (both pairs of opp. sides are //<br>beide pare teenoorg. sye is //)                                                                                                                                          | ✓R                  | (3) |
|             | beine pure icention g. sye is inj                                                                                                                                                                                                       |                     |     |
|             |                                                                                                                                                                                                                                         |                     |     |
|             | PQ    SR $(WP    SR)$ $PQ = SR$ $(PQ = WP = SR, proved/bewys)$                                                                                                                                                                          | ✓S ✓R               |     |
|             | $\therefore PQRS \text{ is a } //^{\text{m}} \qquad (\text{one pair of opp. sides = and } //$                                                                                                                                           | ✓R                  | (3) |
|             | $een \ paar \ teenoorg. \ sye = en//)$                                                                                                                                                                                                  |                     |     |
|             | OR/OF                                                                                                                                                                                                                                   |                     |     |
|             | VP = SV  (given)                                                                                                                                                                                                                        |                     |     |
|             | $VP = \frac{1}{2}RQ$ (Mid. pnt thm)                                                                                                                                                                                                     | √S                  |     |
|             | VP  RQ (V and P are mid. pnt)                                                                                                                                                                                                           |                     |     |
|             | SP = RQ (V is the mid. pnt)                                                                                                                                                                                                             | ✓S<br>✓R            | (2) |
|             | $\therefore$ PQRS is parm. (one pair = and   )                                                                                                                                                                                          | • K                 | (3) |
|             | DEPARTMENT OF BASIC                                                                                                                                                                                                                     |                     |     |
|             | PRIVATE BAG X895, PRETORIA 0001                                                                                                                                                                                                         |                     |     |
|             | 2019 -11- 1 5                                                                                                                                                                                                                           |                     |     |
| pyright res | erved/Kopiereg voorbehou                                                                                                                                                                                                                |                     |     |

PUBLIC EXAMINATION

CAPS/KABV – Grade/Graad 10 – Marking Guidelines/Nasienriglyne

|       | OR/OF                                                                                                                                                                                                                |                  |      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|
|       | <ul> <li>VP  RQ (V and P are the mid. pnt)</li> <li>∴ SP  RQ (same str. line as VP)</li> <li>SR  PQ (same str. line as WP <b>OR/OF</b> proved)</li> <li>∴ PQRS is parm. (both pairs of opp. sides are   )</li> </ul> | ✓S/R<br>✓S<br>✓R | (3)  |
| 8.2.3 | SR=TW (RSTW is    gram)                                                                                                                                                                                              | ✓S/R             |      |
|       | But SR=WP (provedbewys)                                                                                                                                                                                              |                  |      |
|       | WP=QP (givengege)                                                                                                                                                                                                    |                  |      |
|       | $\therefore$ TQ=TW+WP+PQ                                                                                                                                                                                             | ✓S               | (2)  |
|       | =3SR                                                                                                                                                                                                                 |                  |      |
|       |                                                                                                                                                                                                                      |                  | [12] |
|       |                                                                                                                                                                                                                      |                  |      |

### TOTAL/TOTAAL: 100

