Downloaded from Stanmorephysics.com education

Department: Education PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

MARCH 2020

MARKS: 75

TIME: 11/2 Hours

This question paper consists of 8 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of **6** questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Write neatly and legibly.

Downloaded from Stanmorephysics.com Factorise the following expressions fully:

1.1

$$1.1.1 xy^2 + 3x^2y (1)$$

$$1.1.2 x^2 - 7x - 18 (2)$$

$$1.1.3 x^2y - 16 + 4y - 4x^2 (3)$$

Simplify the following expressions fully: 1.2

1.2.1
$$(2x-1)(x^2-3x+1)$$
 (3)

1.2.2
$$\frac{x^2 - 1}{(x+2) + x(x+2)} \div \frac{x - 1}{2x + 4} \tag{4}$$

$$1.2.3 \qquad \frac{2^{-2n} . 3^{-3n}}{2^{2n} . 4^{n-1} . 12^{-3n}} \tag{4}$$

[17]

QUESTION 2

2.1 Solve for *x*:

$$2.1.1 x(2x-5) = 0 (2)$$

$$2.1.2 3x^2 - 2x - 8 = 0 (3)$$

$$2.1.3 5^{2x-1} - 1 = 0 (2)$$

$$2.1.4 \qquad x = y + xy \tag{3}$$

$$2.1.5 \qquad \frac{8x^3 - 1}{2x - 1} = 1 \tag{4}$$

The following inequality is given: -11 < -2x + 1 < -9; where $x \in \mathbb{R}$. 2.2

2.2.1 Solve for
$$x$$
. (3)

Hence, and without the use of a calculator, show that $x = \sqrt{29}$ would 2.2.2 satisfy the above inequality. (2)

[19]

3.1 Solve for x and y simultaneously:

$$2x - y = 3$$

$$3x + 2y = 8$$

$$(5)$$

3.2 Given that $M = 2^{0.2}$ and $M^b = 16$, determine the value of b. (3)

QUESTION 4

Various options are provided as possible answers to the following questions. Write down the question number (4.1-4.5) and choose the answer by writing the letter (A-D) next to the question number (4.1-4.5) in your answer book, for example: 4.6) D

- 4.1 Which description below does NOT guarantee that a quadrilateral is a square?
 - A. Quadrilateral is both a rectangle and a rhombus
 - B. Quadrilateral is a parallelogram with perpendicular diagonals
 - C. Quadrilateral has all sides equal and all angles equal
 - D. Quadrilateral has all right angles and has all sides equal (1)
- 4.2 Which of the following statements is true?
 - A. All quadrilaterals are rectangles
 - B. All quadrilaterals are squares
 - C. All rectangles are quadrilaterals
 - D. All quadrilaterals are parallelograms (1)
- 4.3 In the diagram below rectangle KLMN has KM = 6x + 16 and LN = 49. Find the value of x.

- A. x = 5,5
- B. x = 33
- C. x = 4.5

D. x = 6.5

- 4.4 A quadrilateral with only one pair of opposite sides parallel is called a:
 - A. Trapezium
 - B. Square
 - C. Kite
 - D. Rhombus (1)
- 4.5 In quadrilateral ABCD, $A\hat{C}D = 2x + 4$ and $A\hat{C}B = 5x 11$. For what value of x is ABCD a rhombus?

- A. x=4
- B. x = 5
- C. x = 6
- D. x = 7

(1) [5]

Give reasons for your statements in the answers to QUESTIONS 5 and 6.

Downloaded from Stanmorephysics.com

In the diagram below, straight lines DEF and TMB are parallel to each other. It is also given that EM = EB and $B\hat{E}F = 64^{\circ}$.

Calculate the size of $M \hat{E} B$.

(4)

5.2 In the diagram below, PQRS is a parallelogram. PT = 4x - 2, TR = x + 28, ST = 4y - 7 and TQ = y + 14.

Determine, with reasons, the values of x and y.

(4)

5.3 In the diagram below, ABCD and BECD are parallelograms with common base DC. $BC \perp BD$ and $D\hat{A}B = 40^{\circ}$.

Determine the size of $B\hat{E}C$. (4)

[12]

QUESTION 6 Downloaded from Stanmorephysics.com

8 NSC

6.1 In the diagram below, JKLM is a rectangle. MLPR is a rhombus.

 $J\hat{M}K = R\hat{M}P$; $J\hat{M}K = 55^{\circ}$ and $M\hat{R}P = 70^{\circ}$

Using the diagram, and giving reasons, determine:

$$6.1.1 M\hat{P}R (2)$$

$$6.1.2 \quad KML \tag{1}$$

$$6.1.3 \quad K\hat{L}P \tag{3}$$

6.2 In the diagram below rectangle ABCD is given with AP = DN.

6.2.1 Prove that
$$\triangle ABP \equiv \triangle DCN$$
. (4)

6.2.2 Prove that
$$AE = DE$$
. (4) [14]

GRAND TOTAL: [75]

Downloaded from Stanmorephysics.com education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

MARCH 2020

MARKING GUIDELINES

MARKS: 75

TIME: $1\frac{1}{2}$ hours

This marking guideline consists of 5 pages.

1.1.1	$xy^2 + 3x^2y$			
	= xy(y+3x)	✓	answer	(1)
1.1.2	$x^2 - 7x - 18$		(0)	
	=(x-9)(x+2)	✓	(x-9) $(x+2)$	(2)
1.1.3	$x^2y - 16 + 4y - 4x^2$			
	$= x^2 y + 4y - 4x^2 - 16$	√	grouping	
	$= y(x^2 + 4) - 4(x^2 + 4)$			
	$=(x^2+4)(y-4)$	√ ✓	common bracket answer	(3)
1.2.1	$(2x-1)(x^2-3x+1)$	✓		
	$=2x^3-6x^2+2x-x^2+3x-1$	∨ ✓	correct expansion $-7x^2$	
	$=2x^3 - 7x^2 + 5x - 1$	✓	+ 5 <i>x</i>	(3)
1.2.2	$= 2x^{3} - 7x^{2} + 5x - 1$ $\frac{x^{2} - 1}{(x+2) + x(x+2)} \div \frac{x - 1}{2x + 4}$	V	factorising of D.O.T.S	
		✓	factorising of common bracket	
	$= \frac{(x-1)(x+1)}{(x+2)(1+x)} \times \frac{2(x+2)}{x-1}$	✓	changing ÷	(4)
1.2.3	$=2$ $\frac{2^{-2n} \cdot 3^{-3n}}{2^{2n} \cdot 4^{n-1} \cdot 12^{-3n}}$	V	answer	(4)
1.2.3	$\frac{2^{2n}.3^{3n}}{2^{2n}.4^{n-1}.12^{-3n}}$			
	$=\frac{2^{-2n}.3^{-3n}}{2^{2n}.2^{2n-2}.(2^2.3)^{-3n}}$	✓	prime bases	
		√	raising powers	
	$=\frac{2^{-2n-2n-2n+2}.3^{-3n}}{2^{-6n}3^{-3n}}$	•	raising powers	
	$\begin{vmatrix} 2^{-0n} \cdot 3^{-3n} \\ = 2^{-6n+2+6n} \cdot 3^{-3n+3n} \end{vmatrix}$	✓	simplification	
	$= 2 \qquad .3$ $= 2^2$			
	=2 $=4$			(4)
		√	answer	(4) [17]
		1		[-'J

2.1.1	x(2x-5) = 0			
	$\therefore x = 0 \text{ or } x = \frac{5}{2}$	✓	x = 0	
	$\therefore x = 0 \text{ or } x = \frac{1}{2}$	✓	$x=\frac{5}{}$	
			2	(2)
2.1.2	$3x^2 - 2x - 8 = 0$			
	(3x+4)(x-2) = 0	✓	correct factors	
			4	
	$\therefore x = -\frac{4}{3} \text{ or } x = 2$	✓	$x = -\frac{1}{3}$	
		✓	x = 2	(3)

2.1.3 $5^{2x-1} - 1 = 0$ $5^{2x-1} = 5^{0}$ $\therefore 2x - 1 = 0$	
$\therefore 2x - 1 = 0$	
	l l
$\therefore x = \frac{1}{2}$	(2)
2	(2)
x - xy = y	
x(1-y) = y isolate x ter factorise x	ms
$x = \frac{y}{1 - y}$ answer	(3)
$\frac{2.1.5}{2x-1} = 1$ Restriction: $x \neq \frac{1}{2}$	
$\frac{(2x-1)(4x^2+2x+1)}{2x-1} = 1$ factorising	
${2x-1} = 1$	
$4x^2 + 2x + 1 = 1$ simplification	on
$4x^2 + 2x = 0$	
2x(2x+1) = 0 factors	
$\begin{vmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot &$	
$\therefore x = 0 \text{ or } x = -\frac{1}{2}$ $2.2.1 -11 < -2x + 1 < -9$ both x value	es (4)
$\begin{vmatrix} 2.2.1 & -11 < -2x + 1 < -9 \end{vmatrix}$	
-12 < -2x < -10	. 10
$-6 < -x < -5$ $-12 < -2x < -5$ $\checkmark values$	<-10
$\therefore 5 < x < 6$ \times \text{inequality "}	'flip" (3)
2.2.2 25 < 29 < 36	
$\sqrt{25} < \sqrt{29} < \sqrt{36}$	
$1.5 < \sqrt{29} < 6$ $1.5 < \sqrt{29} < 6$	< $\sqrt{36}$
3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Therefore $\sqrt{29}$ satisfies the inequality in 2.2.1	(2)
	[19]

Downloaded from Stanmorephysics.com

3.1	2x - y = 3	Eq1			
	3x + 2y = 8	Eq2			
	$Eq1\times2:$ $4x-2$		✓	setting up equations	
	Eq2: 3x+2 $Eq1+Eq2: 7x$		✓ ✓	elimination to solve for x or y $x = 2$	
	Sub $x = 2$ into Eq1:	2(2) - y = 3	✓	substitution	
		-y = -1 $y = 1$	✓	y = 1	(5)
		OR			
	2x - y = 3	Eq1			
	3x + 2y = 8	Eq2			
	$Eq1 \rightarrow Eq3$: Sub Eq3 into Eq2:	y = 2x - 3 3x + 2(2x - 3) = 8 3x + 4x - 6 = 8	✓ ✓	setting up equation substitution	
		7x = 14 $x = 2$	✓	x = 2	
	Sub $x = 2$ into $Eq3$:	y = 2(2) - 3 $y = 1$	√ ✓	substitution $y = 1$	(5)
3.2	$M^b = 16$ $\therefore M^b = 2^4$		✓	$16 = 2^4$	
	but $M = 2^{0,2}$				
	$∴ (2^{0,2})^b = 2^4$ $∴ 0,2b = 4$		✓	$(2^{0,2})^b = 2^4$	
	$\therefore \qquad b = 20$		✓	answer	(3)
					[8]

QUESTION 4

4.1	В	✓ answer	(1)
4.2	C	✓ answer	(1)
4.3	A	✓ answer	(1)
4.4	A	✓ answer	(1)
4.5	В	✓ answer	(1)
			[5]

NSC – Marking Guidelines

QUESTION 5

5.1	$B\hat{E}F = 64^{\circ}$	(given)		C	
	$\therefore T\hat{B}E = 64^{\circ}$	$(alt \angle s, DF \Box TB)$	✓ ✓	S R	
	$\therefore \hat{EMB} = 64^{\circ}$	$(\angle s opp = sides)$	✓	S/R	
	$\therefore M\hat{E}B = 52^{\circ}$	$(sum \angle s \Delta)$	✓	S/R	(4)
5.2	4x - 2 = x + 28	(diagonals of parm)	✓	S/R	
	3x = 30				
	x = 10		√	x = 10	
	4y - 7 = y + 14	(diagonals of parm)	✓	S/R	
	3y = 21				
	y = 3		✓	y = 3	(4)
5.3	$E\hat{B}C = 40^{\circ}$	(corresponding $\angle s$; $AD \square BC$)	✓	S	
	$\hat{BCE} = 90^{\circ}$	(alternate $\angle s$; $BD \square EC$)	√	R C/D	
	$\therefore B\hat{E}C = 50^{\circ}$,	•	S/R	
	$\therefore BEC = 50^{\circ}$	$(sum \angle s \Delta)$	✓	S/R	(4)
					[12]

QUESTION 6

$AP = DN$ $AB = DC$ $\Delta ABP \ and \ \Delta DCN$ $= N\hat{D}C$ $E = A\hat{D}E$ $= DE$	(given) (opp sides of rect)		S/R S/R S/R S/R S/R	✓	R	(4) (4) [14]
$AB = DC$ $\Delta ABP \ and \ \Delta DCN$ $= N\hat{D}C$ $E = A\hat{D}E$	(given) (opp sides of rect) (RHS) (congruent Δs proved) (adj compl ∠s)	✓ ✓ ✓	S/R S/R S/R	✓	R	(4)
$AB = DC$ $\Delta ABP \ and \ \Delta DCN$ $= N\hat{D}C$	(given) (opp sides of rect) (RHS) (congruent Δs proved)	✓ ✓	S/R S/R	✓	R	(4)
AB = DC ΔABP and ΔDCN	(given) (opp sides of rect) (RHS)	√ ✓	S/R S/R			(4)
AB = DC ΔABP and ΔDCN	(given) (opp sides of rect)	√ ✓	S/R S/R			(4)
AB = DC	(given) (opp sides of rect)	✓	S/R			
	(given)					
AP = DN		✓	S/R			
$\hat{B} = \hat{C} = 90^{\circ}$	(prop of rect)	✓	S/R			
ΔBP and ΔDCN						
` 1 7	,	✓	S			(3)
_		✓	S/R			
$=90^{\circ}$ (pr	op of rect)	✓	S/R			(1)
$a = 35^{\circ}$ (adj	j comp ∠s)	✓	S/R			(1)
= 55° (∠s	sopp = sides	√	R			(2)
	$= 35^{\circ} \qquad \text{(ad)}$ $= 90^{\circ} \qquad \text{(pr)}$	$= 35^{\circ} \qquad \text{(adj comp } \angle \text{s)}$ $= 90^{\circ} \qquad \text{(prop of rect)}$ $= 70^{\circ} \qquad \text{(opp } \angle \text{s rhombus)}$	$ \begin{array}{ccc} \checkmark & & & \checkmark \\ $	$ \begin{array}{cccc} \checkmark & R \\ \checkmark & S/R \\ = 90^{\circ} & (prop of rect) & \checkmark & S/R \\ = 70^{\circ} & (opp \angle s \text{ rhombus}) & \checkmark & S/R \\ \end{cases} $		

Downloaded from Stanmorephysics.com