Analytical Geometry

Term	Explanation
distance	Length (in units) from one point to another. Found by using the
	distance formula using two points given.
gradient	How steep a line is. Found by using the gradient formula using two
	points given.
mid-point	The co-ordinate that represents the middle of a line segment.
	Found by using the mid-point formula using two points given.
parallel	Lines that have the same gradient are parallel to each other.
	Parallel = same gradient.
perpendicular	Two line segments meeting at a right angle.
x-intercept	The point at which a graph cuts the x –axis.
y-intercept	The point at which a graph cuts the y –axis.
point of	The co-ordinate where two graphs intersect each other.
intersection	
diagonal	The line segment joining opposite corners of a quadrilateral.
rectangle	A 4-sided shape (quadrilateral) where both pairs of opposite sides
	are equal in length and all 4 angles are 90^{0} .
square	A 4-sided shape (quadrilateral) where all 4 sides are equal in
	length and all 4 angles are 90^{0} .
kite	A 4-sided shape (quadrilateral) where the adjacent sides (those
	next to each other) are equal in length. The diagonals are
	perpendicular to each other.
rhombus	A 4-sided shape (quadrilateral) is a parallelogram with 4 equal
	sides.
parallelogram	A 4-sided shape (quadrilateral) that has 2 pairs of parallel sides.
equilateral triangle	A triangle with 3 equal sides and 3 equal angles.
isosceles triangle	A triangle with 2 equal sides and 2 equal angles.
collinear	Points that lie on the same line.
origin	The point where the x and y axis meet on a Cartesian plane.

line segment	All points between two given points.
	A _
	В
perimeter	The distance around the outside of a shape (the length of the
	outline of the shape)
angle of inclination	The angle between a line and the horizontal line (most often the
	x –axis). It can be any measurement from 0^0 to 180^0 . It is always
	measured from the horizontal line in an anti-clockwise direction. If
	the line has a positive gradient, the angle of inclination will be less
	than 90° . If the line has a negative gradient, the angle of inclination
	will be between 90° and 180° .
circle	A curve where all points are the same distance from a given fixed
	point (the centre).
circumference	The distance around the circle (the perimeter of the circle).
equidistant	Exactly the same distance.
radius	The distance from the centre point of a circle to the circumference.
concentric circles	Circles of different sizes that have a common centre point. (A
	smaller one would lie inside a larger one).
tangent	A line which touches a circle at one point only.
secant	A line which intersects the circle at 2 points.

Revision of Grade 10 and 11 work

You should already know the following from Grade 10 and 11:

- Distance between two points
- Midpoint of a line segment
- Gradient of a line segment
- Equation of a straight line
- Angle of inclination

The formulae for all of the above are supplied on the formula sheet.

Basic example to demonstrate how to work with all of the above.

Plot the following points on a Cartesian Plane.

Solutions:	Notes
a) A (2;-2) D (-2;2)	Ensure you label the points accordingly in order
$x_1; y_1 \qquad x_2; y_2$	to avoid careless errors.
$AD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
$AD = \sqrt{(-2-2)^2 + (2-(-2))^2}$	Check that the answer 'looks' reasonable. Does
$AD = \sqrt{(-4)^2 + (2+2)^2}$	the distance look like it is about 5 or 6 units
$AD = \sqrt{(-4)^2 + (4)^2}$	long?
$AD = \sqrt{16 + 16}$	
$AD = \sqrt{32} = 5,66$ units	
b) $mAB = 0$	You could have found these answers by using
	the formula, $m = \frac{y_2 - y_1}{x_2 - x_1}$ and should have come
mBD = undefined	to the same answers. However, note that you
	should know that a horizontal line has a gradient
	of zero and a vertical line has an undefined
	gradient.
c) $B(-2; -2)$ and $C(2; 4)$	Always ensure you label the points accordingly
$x_1; y_1 \qquad x_2; y_2$	in order to avoid careless errors.
$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	Check that the answer 'looks' reasonable.
$=\left(\frac{-2+2}{2};\frac{-2+4}{2}\right)$	Plot the point and look if it is halfway between B and C.
$=\left(\frac{0}{2};\frac{2}{2}\right)=(0;1)$	

d) $y - y_1 = m(x - x_1)$	In order to use the formula,
B(-2; -2) and $C(2; 4)$	$y - y_1 = m(x - x_1)$, you need a point and the
$x_1; y_1 x_2; y_2$	gradient. This is an important skill for Calculus
$\gamma_{i} = \gamma_{i}$	as well.
$m = \frac{y_2 - y_1}{x_2 - x_1}$	We currently have two points. These will be
4 - (-2)	used to find the gradient then any one of the
$m = \frac{1}{2 - (-2)}$	points can be used to find the equation of the
4+2	line.
$m = \frac{1}{2+2}$	
6	Keep checking your answer. The gradient is
$m = \frac{1}{4}$	positive – does that look correct? Is the line
$m = \frac{3}{2}$	sloping upwards?
^m ⁻ ²	
$y - y_1 = m(x - x_1)$	
$m = \frac{3}{2} \qquad C(2;4)$	
$y-4 = \frac{3}{2}(x-2)$	
···· 4 – ³ ··· 2	
$y-4=\overline{2}x-3$	Does a v –intercept of 1 look correct? Use the
$y = \frac{3}{2}x - 3 + 4$	diagram to check.
3	
$y = \frac{1}{2}x + 1$	
e)	The angle of inclination is always linked directly
BC:	to the gradient.
$\tan \theta = m$	The formula for inclination is given.
$mBC = \frac{3}{2}$	
2	
(proved in (d))	
$\therefore \tan \theta = \frac{3}{2}$	
$\therefore \theta = 56,3^o$	
AD:	When the gradient is negative, you need to
$\tan \theta = m$	expect an obtuse angle as the angle of
A(2;-2) D(-2;2)	inclination.
$x_1; y_1 \qquad x_2; y_2$	

	Note this on the Cartesian plane by joining A to
$m = \frac{y_2 - y_1}{y_2 - y_1}$	D and marking the angle of inclination by
$x_2 - x_1$	starting on the x –axis and rotating in an anti-
$m = \frac{2 - (-2)}{-2 - 2}$	clockwise direction to meet up with the line.
$m = \frac{4}{-4} = -1$	
an heta = -1	
RA: 45 ^o	
$\therefore 180^{o} - 45^{o} = 135^{o}$	
$\therefore \theta = 135^{o}$	

It is important that you find the above 5 skills relatively easy. These are the basics to almost all Analytical geometry questions. However, as there is often more to questions in this section, below are a further 2 fully worked examples from Grade 11 past papers in order to show how these skills are used in combination with other knowledge and skills.

b) Determine the equation of line AC.	Whenever you read 'find the equation of a line',
	you need to remember that all you require is
	the gradient and a point. The gradient was
	found in the previous question and you have 2
	points. Either can be used.
c) Hence, determine the co-ordinates	This should be straightforward
of midpoint M of AB.	
d) Determine the value of p , if CD is	If a line is parallel to the x –axis, then the
parallel to the x –axis.	y –co-ordinates must be equal.
	Equate the y –co-ordinates and solve.
Solutions	
a) $mBC = \frac{y_2 - y_1}{x_2 - x_1}$	b)
(-2;3) (4;-1)	$m = -\frac{2}{3}$ $C(4; -1)$
$x_1; y_1 x_2; y_2$	$y - y_1 = m(x - x_1)$
$mBC = \frac{-1-3}{4-(-2)}$ $mBC = \frac{-4}{6}$ $mBC = -\frac{2}{3}$ $mAB = mBC$ $A(2a - 11; a + 2) B(-2; 3)$ $x_{1}; y_{1} \qquad x_{2}; y_{2}$ $mAB = \frac{3-(a+2)}{-2-(2a-11)}$	$y - (-1) = -\frac{2}{3}(x - 4)$ $y + 1 = -\frac{2}{3}x + \frac{8}{3}$ $y = -\frac{2}{3}x + \frac{8}{3} - 1$ $y = -\frac{2}{3}x + \frac{5}{3}$

$$-\frac{2}{3} = \frac{3-a-2}{-2-2a+11}$$

$$-\frac{2}{3} = \frac{1-a}{-2a+9}$$

$$-2(-2a+9) = 3(1-a)$$

$$4a - 18 = 3 - 3a$$

$$4a + 3a = 3 + 18$$

$$7a = 21$$

$$a = 3$$
Remember to check if your answer
looks reasonable – this makes
$$A(2(3) - 11; 3 + 2)$$
 which equals
$$A(-5; 5).$$
 You should check if this
looks feasible on the diagram

d)

$$-1 = p - 7$$

$$6 = p$$

c)
c)
A(-5; 5) B(-2; 3)
A(-5; 5) B(-2; 4)
A(-5; 5) B(-2; 4

Example 2

A(1; 6), B(3; 0), C(12; 3) and D are the vertices of a trapezium with AD//BC. E is the midpoint of BC. The angle of inclination of the straight line BC is θ , as shown in the diagram.

(DBE Exemplar 2013)

Question	Notes
a) Calculate the co-ordinates of	This should be straightforward
E.	
b) Determine the gradient of line	This should be straightforward. Remember that as the
BC.	line is sloping upwards, you should expect the
	gradient to be positive.
c) Calculate the magnitude of θ .	This should be straightforward. Remember that as the
	gradient is positive, you should be expecting an acute
	angle.
d) Prove that AD is	What aspect of this section would you link to
perpendicular to AB.	'perpendicular'? (gradient).
	You therefore need to find the gradient of both lines.
	What is required to make lines perpendicular?
	(the product of their gradients should be -1).
e) A straight line passing though	This is a level 3/4 question and some will find it very
vertex A does not pass	difficult.
through any of the sides of	If you are asked to find the equation of a line, you
the trapezium. This line	should remind yourself that you need a point and the
makes an angle of 45^o with	gradient to do that. You already have a point (A is
side AD of the trapezium.	given), therefore the focus should be on finding the
Determine the equation of	gradient.
this straight line.	Remember that AD//BC.

	(And that information is never given in a question if it
	will not be useful). Therefore, if a horizontal line is
	drawn through A, the angle of inclination from that line
	to AD will be equal to the angle of inclination of BC
	(found in (c)).
	The inclination of line AD can now be found by adding
	45^{o} to the answer from (c) - 18,43 ^o .
	Inclination can be used to find the gradient.
	Once a gradient and a point are available, the formula
	can be used to find the equation.
Solutions:	
a)	b)
B(3;0) $C(12;3)$	B(3;0) $C(12;3)$
$x_1; y_1 \qquad x_2; y_2$	$x_1; y_1 x_2; y_2$
$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	3 - 0
$\begin{pmatrix} 2 & 2 \end{pmatrix}$	$mBC = \frac{12-3}{12-3}$
$=\left(\frac{3+12}{2};\frac{3+3}{2}\right)$	$mBC = \frac{3}{2}$
$-(^{15},^3)$	9
$\left(\frac{1}{2},\frac{1}{2}\right)$	$mBC = \frac{1}{3}$
Check again that this looks correct	
on the diagram.	
c)	d)
$tan \theta = m$	$m \Delta D = \frac{1}{2} (\Delta D / BC)$
_ 1	$MAD = \frac{1}{3}$ (AD//DC)
$\tan \theta = \frac{1}{3}$	A(1;6) $B(3;0)$
$\therefore \ \theta = 18,43^o$	$x_1; y_1 x_2; y_2$
	$mAB = \frac{0-6}{3-1}$
	$mAB = \frac{-6}{2}$
	$\frac{2}{mAB} = -3$
	$mAB \times mAD = \frac{1}{3} \times -3 = -1$
	$\therefore AB \perp AD$

Circles centred at the origin

This circle has its centre at the origin. The radius is 5 ($\sqrt{25}$)

It is NOT a function (because for every x –value there are 2 possible y –values)

$$x^2 + y^2 = r^2$$

The 'r' represents the radius. This is the general form of a circle that has it's centre at the origin.

Application of circle graphs and equations

Example 1

- a) State the centre and radius of the circle $x^2 + y^2 = 30$
- b) Find the equation of a circle centred at the origin that passes through the point (2; -6)

Solution	Notes
a) Centre (0;0)	You need to recognize that the centre will be at
Radius: $\sqrt{30}$	the origin when the equation is written in this
	format.
	The radius will always be the square root of the
	constant.
b) $x^2 + y^2 = r^2$	It is good practice to draw a rough sketch.
(2; -6)	Substitute the x –value and y –value of the
$2^2 + (-6)^2 = r^2$	coordinate to find the value of r^2 .
$4 + 36 = r^2$	
$40 = r^2$	
$\therefore x^2 + y^2 = 40$	

Example 2		
Determine the value of 'a' if (2; a) lies on the circle $x^2 + y^2 = 20$		
Solution	Notes	
$x^2 + y^2 = 20$	If the point given lies on the circle then by	
$2^2 + a^2 = 20$	substituting the coordinates of the point, you	
$4 + a^2 = 20$	can solve for <i>a</i> .	
$a^2 = 16$		
a = 4 or $a = -4$		

Circles not centred at the origin

Understanding the transformations of functions and relations in general is important. Here is a refresher of functions previously covered:

Equation:	Asymptotes, turning points, horizontal and vertical shifts are
	all important. The one most useful for the circle though is the
	horizontal shift. So those shifts have been made bold.
$y = (x - 2)^2 + 5$	This is a parabola (quadratic function).
	There has been a horizontal shift, 2 units to the right and
	a vertical shift 5 units up. The coordinate of the turning point
	is (2;5)
$v = \frac{2}{-4}$	This is a hyperbola.
x+3	There has been a horizontal shift, 3 units to the left and a
	vertical shift 4 units down.
	The asymptotes are: $x = -3 \& y = -4$)
$y = 2.3^{x+1} - 2$	This is an exponential function.
	There has been a horizontal shift, 1 unit to the left and a
	vertical shift of 2 down. The asymptote is $y = -2$

Even though all of this is not part of Analytical geometry it is important to discuss for 2 reasons:

- (1) The functions from Grade 11 are not covered in detail again this year but are assessed.
- (2) It is a reminder that there is often a link between two (or more) topics and that skills you learn in one topic are often required in another.

$$(x-a)^2 + (y-b)^2 = r^2$$

This is the standard form of a circle.

'r' still represents the radius

The 'a' and 'b' represent shifts in the graph, which means that the centre will have shifted form the origin. Therefore (a; b) also represents the centre.

In the same way the horizontal shift is found by using the 'opposite' sign ('plus' means shift left and 'minus' means shift right), so finding the centre works the same. This equation is no different from the one already learned.

$$(x - 0)^{2} + (y - 0)^{2} = r^{2}$$

is the same as:
 $x^{2} + y^{2} = r^{2}$

Example:

$$(x-3)^2 + (y+1)^2 = 25$$

- centre is: (3; -1) remember the change in signs
- radius is: 5 remember to square root the constant

Sketch

You can count the units from the centre to find another 4 points on the circle 9north, south, east and west from the centre).

Use algebra to remove brackets and collect like terms for this equation:

$$(x-3)^{2} + (y+1)^{2} = 25$$
$$x^{2} - 6x + 9 + y^{2} + 2y + 1 = 25$$
$$x^{2} - 6x + y^{2} + 2y + 10 = 25$$

If you subtract 10 on both sides to make one constant:

$$x^2 - 6x + y^2 + 2y = 15$$

Or subtract 25 from both sides

$$x^2 - 6x + y^2 + 2y - 15 = 0$$

Both are acceptable to note the following:

You could be given the equation of the circle in any format that you have seen so far. If it is in either of the last formats, there is an algebraic manipulation that you need to be confident in – completing the square.

By completing the square, it can be changed into the format where the centre and the radius are easier to see.

Below is an example:

Notes	Solution
Ensure the constant is on the RHS	$x^2 - 6x + y^2 + 2y = 15$
Re-write the expression, ready to form a	
perfect square trinomial with both the x and	$x^2 - 6x_{} + y^2 + 2y_{} = 15$
y –values.	
Take the coefficient of x (in this case -6), and	
y (in this case 2) halve them and square them	
$\left(\frac{1}{2} \times -6\right)^2 = 9$	$x^2 - 6x + 9 + y^2 + 2y + 1 = 15 + 9 + 1$
$\left(\frac{1}{2} \times 2\right)^2 = 1$	
Add these to form the perfect square	
trinomials.	
In order to keep the balance, remember to add	
these numbers to BOTH sides.	
Factorise the perfect square trinomials that	
have been formed and simplify the right-hand	$(x-3)^2 + (y+1)^2 = 25$
side.	
The format given has now been changed into	Centre: (3;-1)
the standard format where the centre and	Radius: 5
radius are easy to see.	

Example: $x^2 - 6x + y^2 + 2y - 15 = 0$

Example 3	3
-----------	---

- a) Determine the equation of the circle passing through the points (2; -5) and (4; -1) which form the diameter of the circle
- b) Find the diameter in simplest surd form.

a) (2;-5) (4;-1)	The centre must be the midpoint of the
$x_1; y_1 \qquad x_2; y_2$	diameter.
$ \begin{pmatrix} \frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2} \end{pmatrix} $ = $ \begin{pmatrix} \frac{2+4}{2}; \frac{-5-1}{2} \end{pmatrix} $ (6 -6)	
$=\left(\frac{1}{2};\frac{1}{2}\right)$	Once the centre has been found the rest
= (3; -3)	is similar to the example above.
$(x-3)^{2} + (y+3)^{2} = r^{2}$ $(2;-5)$ $(2-3)^{2} + (-5+3)^{2} = r^{2}$ $(-1)^{2} + (-2)^{2} = r^{2}$ $1+4=r^{2}$ $5=r^{2}$ $(x-3)^{2} + (y+3)^{2} = 5$	Note that essentially you are using the distance formula in this step.
b) Radius = $\sqrt{5}$	As the radius is known, the diameter must
\therefore Diameter = $2\sqrt{5}$	be twice as long.

The following relationship with circles needs to be considered.

Circles that intersect at one point only can either touch externally or internally.

Circles that intersect at two points:

Circles that do not intersect:

The relationship between the radii and the distance between the two centres of each of the circles in the above diagrams is important to understand.

Use R_1 for the radius of the larger circle and r_2 for the radius of the smaller circle.

These aspects of circles are often important in understanding how to answer a question.

Equations of tangents to circles

This topic combines knowledge of Grade 11 Euclidean geometry as well as that of functions and finding equations of straight lines.

Analytical Geometry always brings in knowledge of these other two topics. Topics rarely stand alone in mathematics and many skills are required from previous knowledge, no matter what topic is currently being covered.

A tangent is a straight line that touches a curve at only one point.

Below are two theorems from Grade 11 relating to tangents:

(You learned the tan-chord theorem too but that isn't really used in Analytical geometry)

Note the following:

A tangent is always perpendicular to a radius ($B_1 = B_2 = 90^\circ$ in the above sketch). Fill the right angles in.

Tangents from the same point are equal in length. (AP = BP in the above sketch). Mark these equal.

Refer back to the second diagram.

Below, the right angles have been filled in. This is a key point and is used often in this topic. The theorem of Pythagoras is often required to find a length within the right-angled triangle formed.

What is happening at 'C' on the diagram? (the point of intersection of the two tangents).

Remember how important it is to know other aspects of mathematics in order to excel within a particular topic.

What is covered in this aspect of Analytical Geometry is finding the equation of a tangent to a circle.

What is always needed to find the equation of a straight line? (a point and the gradient!)

In the diagram below, Q(5; 2) is the centre of a circle that intersects the y - axis at P(0; 6)and S. The tangent APB at P intersects the x –axis at B and makes the angle α with the positive x –axis. R is a point on the circle and $P\hat{R}S = \theta$

- a) Determine the equation of the circle in the form $(x a)^2 + (y b)^2 = r^2$.
- b) Calculate the co-ordinate of S.
- c) Determine the equation of the tangent APB in the form y = mx + c.
- d) Calculate the size of α .
- e) Calculate, with reasons, the size of θ .
- f) Calculate the area of ΔPQS .

Solutions	Notes
a) $(x-a)^2 + (y-b)^2 = r^2$	When the centre and a point is available,
Q(5;2)	substitute the centre for a and b then
$(x-5)^2 + (y-2)^2 = r^2$	substitute the other known point to find r^2 .
<i>P</i> (0;6)	
$(0-5)^2 + (6-2)^2 = r^2$	
$(-5)^2 + (4)^2 = r^2$	
$25 + 16 = r^2$	
$41 = r^2$	
$\therefore (x-5)^2 + (y-2)^2 = 41$	

b) $(x-5)^2 + (y-2)^2 = 41$	What 'happens' at S?
$(0-5)^2 + (y-2)^2 = 41$	S is a y –intercept (make $x = 0$)
$25 + y^2 - 4y + 4 = 41$	Note that there are 2 y –intercepts but as
$y^2 - 4y - 12 = 0$	one is given, and it should be easy to see
(y-6)(y+2) = 0	that the answer being looked for is negative.
y = 6 or y = -2	
$\therefore S(0; -2)$	
c) $P(5;2)$ $Q(0;6)$	What is needed to find the equation of a
$x_1; y_1 \qquad x_2; y_2$	tangent? (gradient and a point).
	Gradient needs to be found as in the
$mPQ = \frac{y_2 - y_1}{x_2 - x_1}$	example above.
$mPQ = \frac{6-2}{0-5}$	
$mPQ = -\frac{4}{5}$	
$\therefore \perp \text{gradient} = \frac{5}{4}$	
$m = \frac{5}{4}$ (0;6)	
$y - y_1 = m(x - x_1)$	
$y-6=\frac{5}{4}(x-0)$	
5	
$y = \frac{1}{4}x + 6$	
d) $tan \alpha = m$	What does α represent? (angle of
$tan \alpha = \frac{5}{4}$	inclination).
$\therefore \alpha = 51,34^{\circ}$	How do we find that? ($tan \alpha = m$)
e) $B\hat{P}S = \theta$ (tan-chord)	The tan-chord theorem is useful here.
$\alpha = 51,34^{o}$	$B\hat{P}S = \theta$
$\therefore B\hat{P}S = 38,66^{o} (<'s \text{ of } \Delta)$	Note that $B\hat{P}S$ is in a right-angled triangle
	and that the size of α is already known.
f) $PS = 8$ units and \perp ht = 5 units	The length of PS is known. Therefore, the
$\therefore 4reg \land POS = \frac{1}{(S)(S)}$	perpendicular height from PS to Q is
$\frac{1}{2} \frac{1}{2} \frac{1}$	required.
$= 20units^2$	As this is from the y –axis where $x = 0$, the
	height to the centre is simple to count.

Past Paper examples

Example

In the diagram below, points P(5; 13), Q(-1; 5) and S(7,5; 8) are given. SR//PQ where R is the *y*-intercept of SR. The *x*-intercept of SR is B. QR is joined.

Determine:

- a) The gradient of PQ.
- b) Calculate the length of PQ.
- c) Determine the equation of the line RS in the form ax + by + c = 0.
- d) Determine the x –co-ordinate of B.
- e) Calculate the size of $O\hat{R}B$.
- f) Prove that QBSP is a parallelogram.

DBE Feb/Mar 2015

Solution		Notes
a) P(5;13)	Q(-1;5)	(a) and (b) should be two
$x_1; y_1$	<i>x</i> ₂ ; <i>y</i> ₂	straightforward questions to find
		gradient and distance.
$mPQ = \frac{y_2 - y_1}{x_1 - x_2}$		
$x_2 - x_1$		
$mPQ = \frac{5-13}{1-5}$		
-1 - 5		
$mPQ = \frac{6}{-6}$		
4		
$mPQ = \frac{1}{3}$		

b) P(5;13) Q(-1;5)	
$x_1; y_1 $ $x_2; y_2$	
$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
$PQ = \sqrt{(-1-5)^2 + (5-13)^2}$	
$PQ = \sqrt{(-6)^2 + (-8)^2}$	
$PQ = \sqrt{36 + 64}$	
$PQ = \sqrt{100}$	
PQ = 10	
c) $mPQ = \frac{4}{2}$	Remember that in order to find the
4	equation of a straight line you need
$\therefore mRS = \frac{1}{3}$	gradient and a point.
$m = \frac{4}{7}$ (7.5:8)	Always take note of ALL information given
$n = \frac{1}{3}$ (1,0,0,0)	 as the parallel lines are important.
$y - y_1 - m(x - x_1)$	Although there is not enough information
$y - 8 = \frac{1}{3}(x - 7,5)$	on RS to find gradient, there is on PQ and
$y-8=\frac{4}{3}x-10$	parallel lines have equal gradients.
$y = \frac{4}{3}x - 2$	
Remember the form the equation	
needs to be in. To remove fractions,	
find LCD and multiply each term.	
3y = 4x - 6	
-4x + 3y + 6 = 0	
4x - 3y - 6 = 0	
d) $4x - 3y - 6 = 0$	Using the equation from (c), make $y = 0$
y = 0	to find x –intercept.
4x - 3(0) - 6 = 0	
4x = 6	
$x = \frac{6}{4} = \frac{3}{2}$	

e) $tan \alpha = m$	When asked to find the size of an angle
$tan \alpha = \frac{4}{2}$	that is not an angle of inclination: you will
$tunu - \frac{1}{3}$	need to find an angle of inclination that is
$\therefore \alpha = 53,13^{\circ}$	useful then use some Grade 8 geometry
$\therefore O\hat{B}R = 53,13^o (\text{vert opp <'s})$	from there. In this case, first find α then
$\therefore \ O\hat{R}B = 36,87^o \ (\texttt{<'s of }\Delta)$	work in ΔORB which is right-angled.
f) Option 1:	Remember that there are 5 ways to prove
$B\left(\frac{3}{2};0\right)$ $S(7,5;8)$	that a quadrilateral is a parallelogram.
$x_1 \cdot y_1 \qquad x_2 \cdot y_2$	Make sure you know them well. As you
χ_1, y_1, χ_2, y_2	list all 5 think which are impossible
$BS = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	(opposite angles equal – this would be a
$BS = \sqrt{\left(7, 5 - \frac{3}{2}\right)^2 + (8 - 0)^2}$	large amount of work and quite difficult)
	and which seem more likely. There are
$BS = \sqrt{(6)^2 + (8)^2}$	quite a few that could be found with one
$BS = \sqrt{36 + 64}$	or two calculations.
$BS = \sqrt{100}$	In this case we could use:
BS = 10	One pair of oppos sides equal and
$\therefore BS = PO$	parallel (would need to find distance of
And $BS//PO$ (given)	BS)
$\cdot OBSP$ is a narm	Both pairs of oppos sides parallel (one
(one pair on p sides - and //)	pair is already given – would have to find
	gradients of other pair, QB and PS)
	Diagonals bisect (would need to calculate
	2 midpoints)
	Both pairs of oppos sides equal (one side
	has already been calculated previously –
	would have to find length of other 3 sides)