

This question paper consists of 13 pages including cover page.

INSTRUCTIONS AND INFORMATION

- This question paper consists of TEN questions. Answer ALL the questions in the ANSWER BOOK.
- StartEACH question on a NEW page in the ANSWER BOOK.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line between two sub questions, for example between QUESTION 2.2. and 2.3.
- 5. You may use a non-programmable calculator.
- 6. You may use appropriate mathematical instruments.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions et cetera where required.
- 11 Write neatly and legibly.

QUESTION 1 (Start on a new page)

Various options are provided as possible answers to the following questions. Choose the correct answer and write only the letter (A-D) next to the question number (1.1 - 1.7) on the answer sheet e.g.; 1.8 A.

- 1.1 A box is at rest on a horizontal desk. The name of the force that will form an action reaction pair with gravitational force is......
 - A The force that the earth exerts on the box
 - B The force that the box exerts on the earth.
 - C The normal force acting on the box
 - D The force that the desk exerts on the box (2)
- 1.2 A ball of mass 2 kg is projected vertically upwards. At the highest point of its motion... ignore air friction.
 - i. Acceleration of the ball is zero
 - ii. Net force acting on the ball is 19.6 N
 - iii. Velocity of the ball is zero
 - iv. Net force acting on the ball is zero

Which of the above statement(s) is/are CORRECT?

- A (i) and (iii) only
- B (iii), (iv) and (i) only
- C (iv) only
- D (ii) and (iii) only (2)

1.3 An object is dropped from rest and after falling a distance d, its momentum is p. Ignore the effect of air friction.

The momentum of the object after it has fallen a distance of 5d is.....

- C P
- D $\sqrt{5}p$ (2)
- 1.4 Which ONE of the following compounds is UNSATURATED
 - A Chloroethane
 - B Propan-1-ol
 - C Ethene
 - D Ethane (2)
- 1.5 The name of the functional group of an ALCOHOL is...
 - A Carboxyl group
 - B Carbonyl group
 - C Hydroxyl group
 - D Formyl group (2)

1.6		type of intermolecular force that is responsible for the difference in ng point of butan-1-ol and its CHAIN isomer is		
	Α	London forces.		
	В	OHydrogen bonds.		
	С	on-dipole force.		
	D	Dipole-dipole force	(2)	
1.7	Dilute for	e solution of a strong base and mild heat are reaction conditions		
	Α	Hydrolysis reaction		
	В	Hydration reaction		
	С	Dehydrohalogenation reaction		
	D	Hydrohalogenation reaction	(2)	
1.8	Which ONE of the following compounds has the LOWEST melting point?			
	Α	Hexanal		
	В	Ethanal		
	С	Butanal		
	D	Octanal	[16]	

QUESTION 2 (Start on a new page)

A 5 kg block is connected to a 3 kg block by a light inextensible string through a frictionless pulley as shown in the diagram below. A force, F of magnitude 80 N force is applied on the 5 kg block at an angle of 30° to the horizontal and the system accelerates to the left at 2,2 m.s⁻² on a rough horizontal surface.

- 2.1 Draw a labelled free body diagram indicating all the HORIZONTAL forces acting on the 5 kg block. (3)
- 2.2 Calculate the:
 - 2.2.1 magnitude of the tension in the string. (3)
 - 2.2.2 coefficient of kinetic friction acting on the 5 kg block. (5)
- 2.3 How will each of the following be affected if the angle between the surface and the force **F** increases? Choose from INCREASE, DECREASE or REMAIN THE SAME. Give a reason for your answer.
 - 2.3.1 Kinetic frictional force (2)
 - 2.3.2 Coefficient of kinetic friction (2) [15]

QUESTION 3 (start each question on a new page)

Ball A of mass 200 g is thrown vertically down with velocity of 10 m.s⁻¹ from a cliff of 13 m above the ground.

When ball A hits the ground, it is in contact with the ground for 0.3 s and it then bounces back with a Velocity of 24 m.s⁻¹ until it reaches a MAXIMUM height of 30m after the first bounce. See the diagram below. **Ignore the effects of air friction.**

- 3.1 Define the term *projectile*. (2)
- 3.2 Calculate the....
 - 3.2.1 The velocity at which the Ball A hits the ground. (3)
 - 3.2.2 Magnitude of the average net force exerted by the ground on the ball while it is in contact with it. (4)

At the same instant that Ball A is at its **maximum height after the first bounce**, a similar Ball B is projected vertically upwards from a point of 2m above the ground with a velocity of 15 m.s⁻¹.

- 3.3 Calculate the time it takes for Ball **A** and Ball **B** to pass each other (5)
- 3.4 Draw a velocity vs time graph for Ball **A** from the moment it is projected down until it reaches maximum height after first bounce. (2) [16]

QUESTION 4 (start on a new page)

A 1500 kg car is travelling west at 20 m.s⁻¹ on a horizontal frictionless track. It collides with a 2600 kg truck travelling at 16 m.s⁻¹ east. After the collision, the car travels at 5,2 m.s⁻¹ east. See the diagram below.

- 4.1 State the *principle of conservation of linear momentum* in words. (2)
- 4.2 Calculate the velocity of the truck immediately after the collision. (4)
- 4.3 Determine by means of relevant calculations whether the collision is ELASTIC or INELASTIC. (5)
- 4.4 Which ONE of the vehicles (CAR or TRUCK) that will experience a greater (2) amount of damage during collision? Explain your answer.

[13]

QUESTION 5 (Start on a new page)

Molecules containing carbon atoms are listed in the table below.

Α	G ₂ H₅OH	В	CH ₂ CH ₂
C	H-C-H H-C-H H-C-C-C-H H-C-H H-C-H H-C-H	D	H H H O H-C-C-C-C H H H H
E	Propyl Methanoate	F	H H H O H C C C C C O H H H H

- 5.1 Give one word for the underlined phrase. (1)
- 5.2 Write down the LETTER that represents the following:
 - 5.2.1 A haloalkane (1)
 - 5.2.2 A carboxylic acid (1)
 - 5.2.3 A compound with a general formula C_nH_{2n} . (1)
 - 5.2.4 A compound which has the formyl group as its functional group (1)
 - 5.2.5 Functional isomer of F. (1)
- 5.3 Consider compound **E**, Write down the: (2)
 - 5.3.1 Structural formula of its functional group. (1)
 - 5.3.2 IUPAC name of the alcohol used to prepare this compound. (2)
- 5.4 Write down the IUPAC name of compound C. (3)
- 5.5 Is compound a PRIMARY, SECONDARY or TERTIARY alcohol? Give a reason for your answer.(2)

Proposition Stanmosephypeics.com Tambo Inland - March 2023

Compound G is formed when compound B undergoes HYDROGENATION reaction in the presence of nickel (Ni).

5.6 Use MOLECULAR FORMULAE and write down a balanced equation for the complete combustion of compound G.

[18]

(3)

QUESTION 6 (start on a new page)

nnni nnni

Two groups of compounds were investigated viz: Alkanes and alcohols

The graph below is obtained after learners conducted an investigation on the factors affecting boiling point.

Experiment 1 is for straight chain alkanes while experiment 2 is for straight chain alcohols.

- 6.1 Define the term *boiling point*. (2)
- 6.2 For experiment **1**, write down the:
 - 6.2.1 Independent variable. (1)
 - 6.2.2 Investigative question (2)
 - 6.2.3 Conclusion that can be drawn from graph of alkanes only (2)
- 6.3 Explain why the boiling points of alkanes differ from those of alcohols. Refer to the (TYPE OF INTERMOLECULAR FORCES,STRENGTH OF INTERMOLECULAR FORCES AND ENERGY)

[11]

QUESTION 7 (start on a new page)

Some of the reactions of Pentan-1-ol are represented in the flow diagram below. **P**, **Q** and **R** represent the organic products formed.

7.1 Product P is formed when Pentan-1-ol is heated in the presence of concentrated sulphuric acid.

Write down the:

- 7.1.1 Name of the type of reaction that takes place. (1)
- 7.1.2 Balanced equation for the reaction that takes place using STRUCTURAL FORMULAE. (5)
- 7.2 Product **R** is formed when Pentan-1-ol reacts with ethanoic acid in the presence of an acid catalyst.
 - 7.2.1 Name of the type of reaction that takes place. (1)
 - 7.2.2 Structural formula of the organic product formed (2)
- 7.3 When HBr reacts with Pentan-1-ol, compound **Q**, a haloalkane is formed. Write down the:
 - 7.3.1 Name of the type of reaction that takes place. (1)
 - 7.3.2 IUPAC name of the haloalkane formed. (2)
- 7.4 Draw the structural formulae of two positional isomers of pentan-1-ol. (2)

[14]

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m·s ⁻²
Universal gravitational constant Universele gravitasiekonstant	G	6,67 x 10 ⁻¹¹ N·m ² ·kg ⁻²
Radius of the Earth Radius van die Aarde	R _E	6,38 x 10 ⁶ m
Mass of the Earth Massa van die Aarde	M _E	5,98 x 10 ²⁴ kg
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m·s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J·s
Coulomb's constant Coulomb se konstante	k	9,0 x 10 ⁹ N·m ² ·C ⁻²
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_f = v_I + a \Delta t$	$\Delta x = V_i \Delta t + \frac{1}{2} a \Delta t^2 \text{ or/of } \Delta y = V_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_f^2 = v_i^2 + 2a\Delta x \text{ or/of } v_f^2 = v_i^2 + 2a\Delta y$	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t$ or/of $\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$

FORCE/KRAG

F _{net} = ma	p=mv		
$f_s^{\text{max}} = \mu_s N$	$f_k = \mu_k N$		
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	w=mg		
$F = G \frac{m_1 m_2}{d^2}$ or/of $F = G \frac{m_1 m_2}{r^2}$	$g = G \frac{M}{d^2}$ or/of $g = G \frac{M}{r^2}$		

DIVERZAL SCHOLES CONTROLLES TEST GRADE DAYARIONS GODELINES ORTI DISTRICT MARCH 2023

QUESTION 1

1.1 B ✓✓

(2)

(2)

1.2 D ✓

1.3 D ✓ (2)

1.4 C ✓✓ (2)

1.5 C ✓✓ (2)

1.6 A ✓✓ (2)

1.7 A ✓✓ (2) 1.8 B ✓ ✓

[14]

Stanmorephysics

DIVERZAL SCHOLES CONTROLLED TEST BRADE 12/NARIONG GODBLINES

ORTI DISTRICT MARCH 2023

QUESTION 2

2.1

2.2.1 On 3 kg block

F_{net} = ma
$$T - W = ma$$

$$T - (3)(9.8) = (3)(2.2) \checkmark$$

$$T = 36 N\checkmark$$
(3)

2.2.2 On 5 kg block

F_{net} = ma
F_x -T - f_k = ma

$$\checkmark$$

80cos 30° - 36 - μ_k (5×9.8 + 80sin 30°) = 5(2.2) \checkmark
 $\mu_k = 0.25 \checkmark$ (5)

2.3

Increase ✓ 2.31

According to $(f_k = \mu_k N)$, at a constant coefficient of kinetic friction, kinetic frictional force increases as <u>normal forces increases</u>. ✓ (2)

Increase ✓

Normal force is directly proportional to kinetic frictional force. ✓

2.3.2 Remain the same. ✓

[15]

(2)

DIVERZAL SCIENCES CONTROLLED TEST BRADTE 12 NYARIONG GODILINES

ORTI DISTRICT MARCH 2023

QUESTION 3

3.1 An object which has been given an initial velocity and then it moves under the influence of gravitational force only. ✓✓ (2)

3.2

OPTION 2

1

upwards as positive

$$V_f^2 = V_i^2 + 2a\Delta y$$
 $V_f^2 = V_i^2 + 2a\Delta y$ $= (-10)^2 + 2(-9.8)(-13)$ \checkmark $= (10)^2 + 2(9.8)(13)$ \checkmark $= 18.84 \text{ m.s}^{-1} \text{ downwards}$ \checkmark $= 18.84 \text{ m.s}^{-1} \text{ downwards}$

$$V_f^2 = V_i^2 + 2a\Delta y \checkmark$$
= (10)² + 2(9,8)(13) ✓
= 18,84 m.s⁻¹ downwards ✓ (3)

POSITIVE MARKING FROM QUESTION 3.2.1 3.2.

2

OPTION 1

downwards as positive

F_{net}
$$\Delta t = \Delta p$$

F_{net} $\Delta t = m(v_f - v_i)$

OPTION 2

upwards as positive

F_{net}
$$\Delta t = \Delta p$$

F_{net} $\Delta t = m(v_f - v_i)$

F_{net}(0,3)=
$$200 \times 10^{-3}(24 - (-18,84)) \checkmark$$
F_{net} = $28,56 \text{ N} \checkmark$

3.3 **OPTION 1**

upwards as positive

For ball A

$$\Delta y = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$\Delta y = 0 + \frac{1}{2}(-9.8)\Delta t^{2}$$
 (1)

OPTION 2

downwards as positive

For ball A

$$\Delta y = V_i \Delta t + \frac{1}{2} a \Delta t^{2}$$

$$\Delta y = 0 + \frac{1}{2}(-9.8)\Delta t^{2}$$
 (1) $-\Delta y = 0 + \frac{1}{2}\{+(9.8)\Delta t^{2}$ (1)

(5)

For ball B

$$\Delta y = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

For ball B

$$y = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$-[(30-2) - \Delta y] = -15\Delta t + \frac{1}{2}(-9.8)\Delta t^{2} \quad [(30-2) - \Delta y] = 15\Delta t + \frac{1}{2}(9.8)\Delta t^{2}$$
....(2)

.... (2)(2) (1) Into (2) (1) Into (2)
$$t = 1.87 \text{ s} \checkmark$$
 $t = 1.87 \text{ s} \checkmark$

DIVERNAL SCHOLLES TEST BRADEP HYDRIANG GUDILINES

ORTI DISTRICT MARCH 2023

3.4 **OPTION 1**

upwards as positive

shape : ✓

label both axis : ✓

OPTION 2

Downwards as positive

shape : ✓

label both axis : ✓

[16]

(2)

DIVERZAL SCHOLET CONTROLLED TEST BRADIE! NARIONG GODDLINES

ORTI DISTRICT MARCH 2023

QUESTION 4

- 4.1 The total linear momentum of an isolated system remains constant. ✓✓ (2)
- 4.2 $\Sigma pi = \Sigma pf$ $m_c V_{ic} + m_t V_{it} = m_c V_{fc} + m_t V_{ft} \qquad \checkmark$ $(1500)(-20) + (2600)(16) \checkmark = (1500)(5,2) + (2600) V_{ft} \checkmark$ $V_{ft} = 1,46 \text{ m.s}^{-1} \text{ easwards. } \checkmark$ (4)

4.3 Inealstic ✓

POSITIVE MARKING FROM QUESTION 4.2

$$\Sigma Ek_{before} = \frac{1}{2} m_c v_{ic}^2 + \frac{1}{2} m_t v_{it}^2 \checkmark$$

$$= \frac{1}{2} (1500)(20)^2 + \frac{1}{2} (2600)(16)^2 \checkmark$$

$$= 622800 J$$

$$\Sigma E_{kafter} = \frac{1}{2} m_c v_{fc}^2 + \frac{1}{2} m_t v_{ft}^2$$

$$= \frac{1}{2} (1500)(5,2)^2 + \frac{1}{2} (2600)(1,46)^2 \checkmark$$

$$= 23051 J$$
(5)

 $\Sigma Ek_{before} \neq \Sigma E_{kafter} \checkmark$

4.4 Car ✓

It experiences a greater acceleration OR It has a greater change in velocity ✓

[13]

DIVERZAL SCHOLET CONTROLLED TEST BYARDED AND GODDLINES

ORTI DISTRICT MARCH 2023

QUESTION 5

5.1 Organic molecules. ✓ (1)

5.2

5.3.2 Propanol
$$\checkmark\checkmark$$
 (2)

5.4 4 - bromo - 2, 2 - dimethyl pentane (3)

5.5 Primary alcohol. ✓

The carbon atom bonded to the hydroxyl (-OH) group is directly bonded to only one other carbon atom. \checkmark

(2)

5.6
$$2C_2H_6 + 7O_2 \checkmark$$
 4CO₂ + 6H₂O \checkmark \checkmark balancing. (3) [18]

DIVISICAL SCHOLES CONTROLLES TEST GRADIE DAYARIONS GODELINES ORTI DISTRICT MARCH 2023

6.1	The <u>te</u>	emperature at which the vapour pressure ✓ of a substance equals the	
	atmo	pheric pressure. ✓	(2)
6.2	_	<u> </u>	
	6.2.1	Number of carbons/ chain length. ✓	(1)
	6.2.2	What is the relationship between the number of carbon atoms/	(2)
		chain length and the boiling point? $\checkmark\checkmark$	
	6.2.3	As the number of carbon atoms / chain length increases, the boiling point also increases. \checkmark \checkmark	(2)
6.3	•	Alkanes have <u>London forces</u> . ✓	
	•	Alcohols have London forces Dipole-dipole forces and <u>hydrogen</u>	
		<u>bonds</u> . ✓	(4)
	•	The intermolecular forces of alcohols are stronger than those of	
		alkanes.✓	
	•	More energy needed to overcome the intermolecular forces of	
		alcohols. ✓	[11]
			[TT]

DIVERZAL SCHOLET CONTROLLED TEST BRADTE DAY ARRIVES GODDLINES

ORTI DISTRICT MARCH 2023

QUESTION 7

7.1

Functional group: ✓

Н

н н

он н

Functional group: ✓

Whole structure <u>correct</u>: ✓ Water ✓

Whole structure: ✓

(5)

7.2

7.2.1 Esterification
$$\checkmark$$
 (1)

7.2.2

7.3

7.3.1 Substitution
$$\checkmark$$
 (1)

7.3.2 1-bromopentane
$$\checkmark\checkmark$$
 (2)

7.4

[14]

TOTAL [100]