

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 10

MATHEMATICS

COMMON TEST

JUNE 2021

Stanmorephysics.com

MARKS: 50

TIME: 1 hour

This question paper consists of 4 pages.

Copyright Reserved

Please turn over

nonephysics.com

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 3 questions.
- Answer ALL the questions. 2.
- Clearly show ALL calculations, diagrams, graphs, etc. which you have used in 3. determining your answers.
- Answers only will NOT necessarily be awarded full marks. 4.
- You may use an approved scientific calculator (non-programmable 5. non-graphical), unless stated otherwise.
- Diagrams are NOT necessarily drawn to scale.

 Write neatly and legibly. If necessary, round off answers correct to TWO decimal places, unless stated 6.
- 7.
- 8.

Copyright Reserved Please turn over

QUESTION 1

1.1 Consider the following number sequences: -14; -17; -20; -23; ...

1.1.1 Stanmorephysics.bdn?

Write down the next TWO terms in the sequence.

(2)

Complete the table below, by determining the values of a, b and c.

n	1	2	3	а	14	50	
T_n	- 14	- 17	- 20	- 32	b	c	(3)

1.1.3 Write down the general term, T_n , of the sequence.

(2)

1.2 A sequence of patterns is made from square tiles and triangular tiles. Below are the first three patterns in the sequence.

Pattern 1

Pattern 2

Pattern 3

- 1.2.1 Determine how many square tiles are required for pattern 10.
- (2)
- 1.2.2 Calculate how many triangular tiles are required for pattern 24.

(3) [12]

(2)

QUESTION 2

- If $\hat{A}=40^{\circ}$ and $\hat{B}=19^{\circ}$, use a calculator to evaluate, correct to TWO decimal places, the following: $\cot \hat{B} \sec \hat{A}$.
- Given: $17 \sin \theta + 8 = 0$ and $90^{\circ} \le \theta \le 270^{\circ}$, determine with the aid of a diagram, and without the use of a calculator, the value of:

$$2.2.1 \quad \cos^2\theta \tag{4}$$

$$2.2.2 2 tan \theta - cos ec\theta (3)$$

Solve for x (correct to TWO decimal places) if:

2.3
$$3\cos(3x+10^{\circ})-1=0$$
 , $x \in [0^{\circ}; 90^{\circ}]$. (4)

2.4 Without the use of a calculator, showing all working, determine the value of:

$$\sin 90^{\circ} + \tan^2 45^{\circ} + \sqrt{2}\cos 45^{\circ} \tag{3}$$

[16]

QUESTION 3

The graphs of $f(x) = \frac{1}{2}x^2 - 8$ and g(x) = -x - 4 are given.

A and B are x- intercepts of the graph of f, and D is the turning point of f.

The graph of g meets f at B and E.

C is the y-intercept of g.

3.1 Determine:

3.1.2 the length of CD. (2)

3.1.3 the equation of
$$k(x)$$
, if $k(x) = -f(x)$ (2)

3.2 The following functions are given: $f(x) = \frac{2}{x} + 2$ and $h(x) = 2^x + 2$.

3.2.1 Sketch the graphs of f and h on the same set of axes, clearly showing all intercepts with the axes and asymptotes where applicable. (8)

3.2.2 Write down the domain of
$$f$$
. (2) [22]

TOTAL: 50

Downloaded from Stanmorephysics.com

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

Stanmorephysics com

GRADE 10

MATHEMATICS

COMMON TEST

JUNE 2021

MARKING GUIDELINE

MARKS:

50

TIME:

1 hour

This memorandum consists of 4 pages.

Copyright Reserved

Please turn over

Mathematics

NSC - Marking Guidelines

KZN/June 2021

QUESTION 1

1.1.1	-26; -29	11	answer	(2)
1.1.2	a = 7	1	answer	
į	b = -53	1	answer	
	c = -161	1	answer	(3)
1.1.3	$T_n = -3n - 11$	V	– 3n	
1	"	1	- 11	(2)
1.2.1	1; 4; 9; Answer only: 2/2	7 1	Square pattern	
	Pattern $10 = 10^2 = 100$		100	(2)
1.2.2	4;8;12;	1	Pattern	
	$T_n = 4n$ Answer only: 3/3	7/	4n	
	$\therefore T_{24} = 4(24) = 96$	٧ ٧	96	(3)
	124			[12]

QUESTION 2

2.1	cotA — secB			
	$= \cot 19^{\circ} - \sec 40^{\circ}$			
	$=\frac{1}{\tan 19^{\circ}} - \frac{1}{\cos 40^{\circ}}$	1	simplification / convert from reciprocal.	
	= 1,60	1	answer	(2)
2.2.1	$\sin\theta = -\frac{8}{17}$ $x = \sqrt{(17)^2 - (8)^2} = 15$			
	x = -15	~	x = -15	
	-15 θ 0 x -8 17	*	diagram	
	$\cos^2\theta = \left(\frac{-15}{17}\right)^2$	~	substitution	
	$\cos^2\theta = \frac{225}{289}$	~	answer	(4)

Copyright Reserved

Please turn over

Downloaded from Stanmorephysics com

	NSC - Marking Guidelines			
2.2.2	$2\tan\theta - \csc\theta$			
	$= 2\left(\frac{-8}{-15}\right) - \left(\frac{17}{-8}\right)$	~	17 -8	
	$=2\left(\frac{8}{15}\right)+\left(\frac{17}{8}\right)$	~	-8 -15	
	$=\frac{383}{120}$	1	answer	
2.3	$3\cos(3x + 10^\circ) - 1 = 0$	ļ		(3)
2.3	3003(3x + 10) = 1 = 0			
	$\cos(3x+10^\circ)=\frac{1}{3}$	~	simplification	
	$3x + 10^{\circ} = 70,5287$	~	70,5287	
	3x = 60,5287	1	60,5287	
	$x = 20.18^{\circ}$	1	answer	(4)
2.4	$\sin 90^{\circ} + \tan^{2} 45^{\circ} + \sqrt{2} \cos 45^{\circ}$	1	$\tan^2 45 = 1$	
	$= 1 + (1)^2 + \sqrt{2} \times \frac{1}{\sqrt{2}}$	~	$\cos 45^\circ = \frac{1}{\sqrt{2}}$	
	= 1 + 1 + 1 = 3 Answer only: 0/3	~	answer	:
				(3)
L		L		[16]

QUESTION 3

	$\frac{1}{2}x^2 - 8 = 0$ $\frac{1}{2}(x - 4)(x + 4) = 0$ $\therefore x = 4 \text{ or } x = -4$			
	A (-4; 0) B (4; 0) C (0; -4) D (0; -8)	11 11 11	A (-4; 0) B (4; 0) C (0; -4) D (0; -8)	(8)
3.1.2		11	answer	(2)
3.1.3	$k(x) = -\left[\frac{1}{2}x^2 - 8\right]$ $k(x) = -\frac{1}{2}x^2 + 8$	✓ ✓	$-\frac{1}{2}x^2 + 8$	(2)

Copyright Reserved

Please turn over

TOTAL: 50

Copyright Reserved