REPUBLIC OF SOUTH AFRICA



# NATIONAL SENIOR CERTIFICATE

**GRADE 10** 

PHYSICAL SCIENCES

COMMON TEST

SEPTEMBER 2022

Stanmorephysics.com

MARKS:

100

**DURATION:** 

2 hours

This question paper consists of 8 pages, a data sheet and a periodic table.

# INSTRUCTIONS AND INFORMATION

- Write your name and class (e.g. 10A) in the appropriate spaces on the ANSWER BOOK. 1.
- This question paper consists of 7 questions. Answer ALL questions in the ANSWER 2. BOOK.
- Number the answers correctly according to the numbering system used in this question 3. paper.
- Leave ONE line between two sub questions, e.g. between QUESTION 2.1 and 4. QUESTION 2.2.
- You may use a non-programmable calculator. 5.
- You may use appropriate mathematical instruments. 6.
- You are advised to use the attached DATA SHEET and PERIODIC TABLE provided. 7.
- Show ALL formulae and substitutions in ALL calculations. 8.
- Round off your final answers to a minimum of TWO decimal places. 9.
- downloaded from Give brief motivations, discussions, etc. where required. 10.
- Write neatly and legibly. 11.

Please turn over Copyright reserved

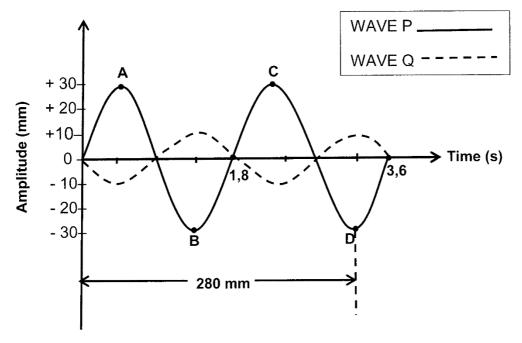
# Downloaded from Stanmorephysics.com

# **QUESTION 1: MULTUPLE-CHOICE QUESTIONS**

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.7) in the ANSWER BOOK, e.g. 1.8 D.

| (A-D) | next to          | the question numbers (1.1 to 1.7) in the ANSWER BOOK, e.g. 1.8 D.                       |     |
|-------|------------------|-----------------------------------------------------------------------------------------|-----|
| 1.1   | Which            | n one of the following is equal to 1 Hertz (1Hz)?                                       |     |
|       | A<br>B<br>C<br>D | 1 m.<br>1 m.s <sup>-1</sup><br>1 s<br>1 s <sup>-1</sup>                                 | (2) |
| 1.2   |                  | y loud explosion can damage a person's hearing. This provides evidence ound waves       |     |
|       | A<br>B<br>C<br>D | can be reflected. transfer energy. can travel through a vacuum. are longitudinal waves. | (2) |
| 1.3   | What             | is the name given to the process by which a solid changes directly into a ga            | as? |
|       | A<br>B<br>C<br>D | Evaporation. Condensation. Sublimation. Freezing.                                       | (2) |
| 1.4   |                  | ONE of the following combinations shows two elements combining same fixed ratio?        |     |
|       | A<br>B<br>C<br>D | $H_2O$ and $H_2O_2$ $SO_2$ and $SO_3$ $NO_2$ and $N_2O_4$ $FeC\ell_2$ and $FeC\ell_3$   | (2) |
| 1.5   | What             | volume (in dm³) does 1 gram of hydrogen gas occupy at STP?                              |     |
|       | A<br>B<br>C<br>D | 5,6<br>11,2<br>22,4<br>44,8                                                             | (2) |
| 1.6   |                  | will the formula of compound XY be if it consists of 1 mole of X and oles of Y?         |     |
|       | A<br>B<br>C<br>D | $XY_2$<br>$X_2Y$<br>$X_3Y_2$<br>$X_2Y_3$                                                | (2) |

Copyright reserved


- 1.7 What is the chemical name for  $Fe_2(SO_4)_3$ ?
  - A Iron (II) sulphite
  - B Iron (II) sulphate
  - C Iron (III) sulphate
  - D Iron (III) sulphite



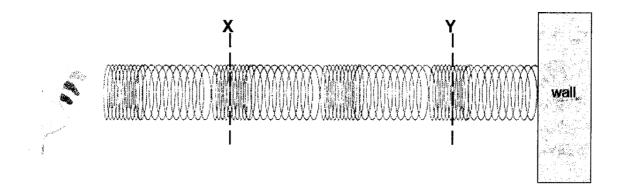
(2) **[14]** 

### **QUESTION 2**

2.1 The graph below shows two waves **P** and **Q**, that are travelling in the same medium at the same time.



- 2.1.1 State the Principle of superposition of waves. (2)
- 2.1.2 Draw the shape of the resultant wave as the two waves (P and Q) cross at t = 1,35s.


**"Indicate** the value of the resultant amplitude on your diagram. (3)

- 2.1.3 What type of interference is illustrated at t = 1,35s? (1)
- 2.1.4 Refer to **wave P** and give TWO reasons why a particle at point A and another particle at point C are in phase. (2)
- 2.1.5 Determine the frequency of wave Q. (3)
- 2.1.6 Calculate the value of the wavelength of **wave Q**. (3)
- 2.1.7 Calculate the speed of wave Q. (3)

Copyright reserved Please turn over

# Downloaded from Stanmorephysics.com

2.2 A learner uses a slinky spring to demonstrate the movement of a LONGITUDINAL WAVE. The slinky spring is fixed to a wall at one end while it is held at the other end. He vibrates the spring using his hand.



2.2.1 Describe the hand movement that would be required in order to produce the wave pattern in the sketch above. Choose from PERPENDICULAR TO or PARALLEL TO the medium.

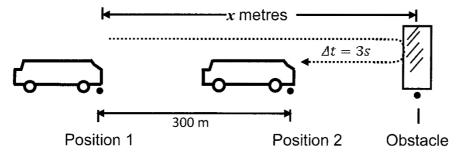
(1)

2.2.2 Explain the answer to Question 2.2.1.

(1)

2.2.3 Calculate the period of the wave if it takes 5 seconds for a disturbance to move from position X to position Y.

(3)

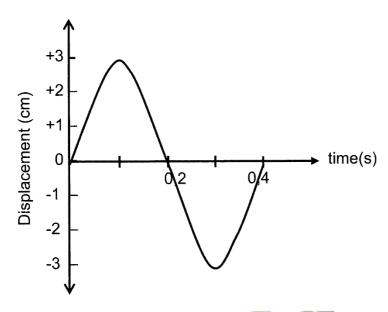

2.2.4 What will happen to the disturbance mentioned in Question 2.2.3 immediately AFTER striking the wall? Choose from MOVES TO THE LEFT, MOVES TO THE RIGHT or STOPS MOVING.

(1) **[23]** 

### **QUESTION 3**

3.1 Define the term *echo*. (2)

3.2 A motorist of a moving car sees an obstacle on the road ahead when he is at position 1 as indicated in the diagram below. Position 1 is *x* metres away from the obstacle. He sounds the car hooter while at position 1 and receives an echo 3 seconds later at position 2. The distance between position 1 and position 2 is 300m.




If the speed of sound in air is 340 m.s<sup>-1</sup> SHOW BY CALCULATION that the distance between position 2 and the obstacle is 360m.

(5)

3.3 The diagram below shows the waveform produced by a pure sound note.





The LOUDNESS of this sound note is now DECREASED to ONE-THIRD of its original value and the PITCH is HALVED.

3.3.1 What is the value (in cm) of the new maximum displacement of particles in the medium? (2)

3.3.2 What is the value (in seconds) of the new period? (2)

3.3.3 Explain the answer to Question 3.3.2. (2)

3.4 What is the frequency range for medical equipment that use ultrasound? (1) [14]

# **QUESTION 4**

4.1 Study the following physical and chemical processes below. Substances X, Y and Z are either reactants used or products formed during each process.

PROCESS I: Silver nitrate is used in the manufacture of glass mirrors.  $2AgNO_3(s) + Heat \rightarrow 2X + 2NO_2(g) + O_2(g)$ 

PROCESS II: Carbon monoxide fumes from a motor car engine is released into the atmosphere and forms carbon dioxide.

CO(g) + Y → 2CO₂(g) + Heat

PROCESS III: A block of ice melts completely.  $H_2O(s) \rightarrow Z$ 

Write down the:

4.1.1 symbol for substance X (1)

(1)

Write down either I, II or III.

| 4.1.2 | phase in which substance X exists                                           | (1) |
|-------|-----------------------------------------------------------------------------|-----|
| 4.1.3 | formula for substance Y                                                     | (1) |
| 4.1.4 | name of substance Z                                                         | (1) |
| 4.1.5 | process that represents a synthesis reaction Write down either I, II or III | (1) |
| 4.1.6 | process that represents a decomposition reaction.                           | (4) |

A learner performed two experiments at two different temperatures. One experiment was carried out at 30°C and the other at 50°C.
 In both experiments 178,50g of potassium bromide was reacted with 53,50g of iron (III) hydroxide to produce potassium hydroxide and iron III bromide.

| EXPERIMENT | TEMPERATURE<br>(° C) | MASS OF POTASSIUM<br>HYDROXIDE FORMED<br>(grams) | MASS OF IRON (III)<br>BROMIDE FORMED<br>(grams) |
|------------|----------------------|--------------------------------------------------|-------------------------------------------------|
| 1          | 30                   | 84                                               | (i)                                             |
| 2          | 50                   | 84                                               | (ii)                                            |

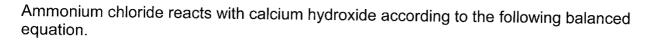
| 4.2.1 | Write down a balanced equation for the reaction between potassium bromide and iron (III) hydroxide.                                                        | (3)                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 4.2.2 | Write down the value of (i).                                                                                                                               | (1)                |
| 4.2.3 | How will the mass (ii) formed in experiment 2 compare to the mass (i) formed in experiment 1? Choose from MORE THAN (i), LESS THAN (i) or THE SAME AS (i). | (1)                |
| 4.2.4 | Explain the answer to Question 4.2.3 by referring to a relevant law in chemistry.                                                                          | (3)<br><b>[14]</b> |

### **QUESTION 5**

Define the mole in terms of Avogadro's number of particles.
Determine the number of oxygen atoms in 9,8g of H<sub>2</sub>SO<sub>4</sub>.
The percentage hydrogen in a 34g sample of H<sub>2</sub>O<sub>2</sub> is found to be 5,88%.
How will the percentage hydrogen be affected if the mass of the H<sub>2</sub>O<sub>2</sub> sample is increased from 34g to 68g?
Choose from INCREASES, DECREASES or REMAINS THE SAME.
NAME the law that was applied in Question 5.3.1.

- A learner prepares a solution of NaOH of concentration 0,22 mol.dm<sup>-3</sup>. She does this by dissolving 4,4g of NaOH in distilled water.
  - 5.4.1 Define the term concentration. (2)
  - 5.4.2 Determine the volume of the solution required to prepare the 0,22 mol.dm<sup>-3</sup>
    (4)

[15]


### **QUESTION 6**

A learner analysed a 100g sample of hydrated aluminium chloride (AlCl<sub>3</sub>· $\mathbf{n}$ H<sub>2</sub>O) and found that 44,72g of the sample was composed of water.

- 6.1 Define the term *water of crystallization*. (2)
- 6.2 Determine the value of  $\mathbf{n}$  in the  $AlCl_3 \cdot \mathbf{n}H_2O$ . (5)
- 6.3 Determine the percentage hydrogen in the 100g sample. (3)

[10]

# **QUESTION 7**



$$2NH_4Cl(s) + Ca(OH)_2(s) \rightarrow 2NH_3(g) + CaCl_2(s) + 2H_2O(l)$$

If 5,60g of Ca(OH)<sub>2</sub> is used up completely in this reaction, calculate:

- 7.1 the number of moles of NH₄Cℓ required for the reaction (3)
- 7.2 the volume of NH<sub>3</sub> gas formed at STP (4)
- 7.3 the percentage yield of NH<sub>3</sub> gas if 2,90 dm<sup>3</sup> of NH<sub>3</sub> is actually produced (3)

TOTAL MARKS: 100

# **PHYSICAL CONSTANTS: PHYSICS**

| NAME                                                  | SYMBOL | VALUE                                   |  |  |
|-------------------------------------------------------|--------|-----------------------------------------|--|--|
| Acceleration due to gravity Swaartekragversnelling    | g      | 9,8 m·s <sup>-2</sup>                   |  |  |
| Speed of light in a vacuum Spoed van lig in 'n vacuum | С      | 3,0 x 10 <sup>8</sup> m·s <sup>-1</sup> |  |  |
| Planck's constant  Planck se konstante                | h      | 6,63 x 10 <sup>-34</sup> J⋅s            |  |  |

# FORMULAE: WAVES, SOUND AND LIGHT

| $v = f \lambda$                 | $T = \frac{1}{f}$         |
|---------------------------------|---------------------------|
| $v = \frac{\Delta x}{\Delta t}$ | E=hf                      |
| $c = f \lambda$                 | $E = h \frac{c}{\lambda}$ |

# **PHYSICAL CONSTANTS: CHEMISTRY**

| NAME                    | SYMBOL         | VALUE                                     |
|-------------------------|----------------|-------------------------------------------|
| Avogadro's constant     | N <sub>A</sub> | 6,02 x 10 <sup>23</sup> mol <sup>-1</sup> |
| Molar gas volume at STP | V <sub>m</sub> | 22,4 dm <sup>3</sup> ·mol <sup>-1</sup>   |
| Standard temperature    | T <sup>0</sup> | 273 K                                     |
| Standard pressure       | pθ             | 1,013 x 10 <sup>5</sup> Pa                |

# **FORMULAE: CHEMISTRY**

|                 | $c = \frac{n}{V}$  |                     |                     |
|-----------------|--------------------|---------------------|---------------------|
| $n=\frac{m}{M}$ | or                 | $n = \frac{V}{V_m}$ | $n = \frac{N}{N_A}$ |
|                 | $c = \frac{m}{MV}$ |                     |                     |

|          | 1        |     | 2        |     | 3                                      |     | 4   | 5         | 6               | 7          | 8                | 9             | 10   | 11    | 12  | 13              | 14       | 15     | 16           | 17         | 18    |
|----------|----------|-----|----------|-----|----------------------------------------|-----|-----|-----------|-----------------|------------|------------------|---------------|------|-------|-----|-----------------|----------|--------|--------------|------------|-------|
|          | (I)      | (   | (II)     |     |                                        |     |     |           |                 |            |                  |               |      |       |     | (III)           | (IV)     | (V)    | (VI)         | (VII)      | (VIII |
|          | 1        | 1   |          |     | Atomic number KEY/SI FIITEI Atomicatal |     |     |           |                 |            |                  |               |      |       |     |                 |          | 2      |              |            |       |
| ۲,2      | Н        |     |          |     | KEY/SLEUTEL Atoomgetal                 |     |     |           |                 |            |                  |               |      |       |     | Н               |          |        |              |            |       |
|          | 1        |     |          |     |                                        |     |     |           |                 |            |                  |               |      |       |     |                 | 4        |        |              |            |       |
|          | 3        |     | 4        |     |                                        |     |     | Electro   | negativ         | rity       | 29               | Sym           | bol  |       |     | _ 5             | 6        | 7      | 8            | 9          | 1     |
|          | Li       | 1,5 | Be       |     |                                        |     |     |           | negatiw         | - 1        | ლ Cu             | Sim           | bool |       |     |                 | 2,5<br>C | င္တံ N | 3,5          | 6,4<br>E   | N     |
|          | 7        | ļ   | 9        |     | 63,5                                   |     |     |           |                 |            |                  |               |      |       |     |                 |          | 2      |              |            |       |
| מ        | 11       | 2   | 12       |     |                                        |     |     |           | <b>A</b>        | !4         |                  | _4            |      |       |     | 13              | 14       | 15     | 16           | 17         | 1     |
| <b>5</b> | Na       | 1,2 | Mg       |     |                                        |     |     |           |                 |            |                  | atomic atoomn |      |       |     | 1 -             | ∞, Si    | 2, b   | 2,5          | % C€       | A     |
|          | 23<br>19 | -   | 24<br>20 |     | 21                                     | l   | 22  | 23        | 24              | 25         | 26               | 27            | 28   | 29    | 30  | 27<br>31        | 28<br>32 | 31     | 32<br>34     | 35,5<br>35 | 3     |
| o,       | K        | 1,0 | Ca       | 6,1 |                                        | ر.  | Ti  | 3, V      | ے Cr            | ر<br>بر Mn | 4                |               | ∞ Ni | e, Cu |     | <sup>φ</sup> Ga |          | % As   | 4. <b>Se</b> | % Br       | K     |
| o        | 39       | ~   | 40       | τ   | 45                                     | τ.  | 48  | - V<br>51 | 52              | 55         | - F <del>C</del> | 59            | 59   | 63,5  | 65  | - Ga            | 73       | 75     | 79           | 80<br>80   | 8     |
|          | 37       |     | 38       |     | 39                                     |     | 40  | 41        | 42              | 43         | 44               | 45            | 46   | 47    | 48  | 49              | 50       | 51     | 52           | 53         | 5     |
| Ď,       | Rb       | 1,0 |          | 1,2 | 1                                      | 4,  | Zr  | Nb        | <sup>∞</sup> Mo |            | ₹ Ru             | 1             |      |       |     |                 | e Sn     |        |              | 2,5        | X     |
| _        | 86       | -   | 88       | •   | 89                                     | ~   | 91  | 92        | 96              |            | 101              | 103           | 106  | 108   | 112 | 115             | 119      | 122    | 128          | 127        | 1:    |
|          | 55       |     | 56       |     | 57                                     |     | 72  | 73        | 74              | 75         | 76               | 77            | 78   | 79    | 80  | 81              | 82       | 83     | 84           | 85         | 8     |
| ,<br>,   | Cs       | 6,0 | Ba       |     | La                                     | 1,6 | Hf  | Ta        | W               | Re         | Os               | l Ir          | Pt   | Au    | Hg  | % T€            | % Pb     | ੂੰ Bi  | % Po         | S At       | R     |
|          | 133      |     | 137      |     | 139                                    |     | 179 | 181       | 184             | 186        | 190              | 192           | 195  | 197   | 201 | 204             | 207      | 209    |              |            |       |
|          | 87       |     | 88       |     | 89                                     |     |     |           |                 |            |                  |               |      |       |     |                 |          |        |              |            |       |
| Š        | Fr       | 6'0 | Ra       |     | Ac                                     |     |     | 58        | 59              | 60         | 61               | 62            | 63   | 64    | 65  | 66              | 67       | 68     | 69           | 70         | 71    |
|          |          |     | 226      |     |                                        |     |     | Ce        | Pr              | Nd         | Pm               | Sm            | Eu   | Gd    | Tb  | Dy              | Но       | Er     | Tm           | Yb         | Lı    |
|          |          |     |          |     |                                        |     |     | 140       | 141             | 144        |                  | 150           | 152  | 157   | 159 | 163             | 165      | 167    | 169          | 173        | 17    |
|          |          |     |          |     |                                        |     |     | 90        | 91              | 92         | 93               | 94            | 95   | 96    | 97  | 98              | 99       | 100    | 101          | 102        | 10    |
|          |          |     |          |     |                                        |     |     | Th        | Pa              | Ü          | Np               | Pu            | Am   | Cm    | Bk  | Cf              | Es       | Fm     | Md           | No         | L     |
|          |          |     |          |     |                                        |     |     | 232       |                 | 238        |                  | • •           |      |       |     | •               | -        |        |              |            |       |





# NATIONAL SENIOR CERTIFICATE

**GRADE 10** 

PHYSICAL SCIENCES

COMMON TEST

SEPTEMBER 2022

MARKING GUIDELINE

Stanmorephysics.com

MARKS: 100

TIME: 2 hours

This marking guideline consists of 8 pages.

[14]

(3)

(3)

### **QUESTION 1: MULTIPLE- CHOICE**

1.1 D **√**√ (2)

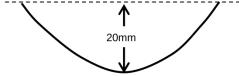
B **√**√ 1.2 (2)

C 🗸 1.3 (2)

C√√ 1.4 (2)

1.5 B **√**√ (2)

D **√**√ 1.6 (2)


C √√ 1.7 (2)

# **QUESTION 2**

2.1.1 when two waves occupy the same space at the same time√

> the resultant displacement is the algebraic sum of the two waves ✓ (2)

2.1.2



 $\checkmark \checkmark$  for shape (trough)

√ 20mm correctly indicated

2.1.3 Destructive√ (1)

2.1.4 same displacement from the rest position√

> (2)both moving in the same direction at the same time ✓

2.1.5  $f = \frac{1}{T}$ 

$$= \frac{1}{1,8}$$

$$= 0.56 Hz$$



2.1.6 1,75 wavelengths  $\checkmark$  = 280 mm  $\checkmark$ 1 wavelength = 160mm ✓ OR (3)0.16m

2.1.7 POSITIVE MARKING FROM 2.1.5 AND 2.1.6

$$v = f \times \lambda \checkmark$$
  
= 0,56 x 0,16 \(\sqrt{} = 0,09 \text{ m.s}^{-1} \sqrt{}

(3)

2.2

### 2.2.1 PARALLEL TO ✓

(1)

2.2.2 To ensure that <u>particles of the medium</u> vibrate <u>along the medium</u> ✓ OR do not vibrate perpendicular <u>medium</u> of the wave

(1)

2.2.3

$$x = \frac{5}{2}$$
$$= 2,55 \text{ s}$$

(3)

2.2.4 MOVES TO THE LEFT ✓

(1) **[23]** 

### **QUESTION 3**

3.1 A sound wave that is reflected off a surface ✓ ✓

(2)

3.2 **OPTION 1**:

The distance covered in 3 s = (2x - 300)m

$$v = \frac{D}{\Delta t}$$

$$340 = \frac{2x - 300}{3}$$

$$x = 660 m$$

$$dis \tan ce = \left(\underline{660} - 300\right) \quad \checkmark$$
$$= 360 \, m$$

### **OPTION 2**:

 $\Delta t$  for sound to travel from position 1 to position 2:

$$v = \frac{D}{\Delta t} \checkmark$$

$$340 = \frac{300}{\Delta t} \checkmark$$

$$\Delta t = 0.882 \text{ s}$$

 $\Delta t$  for sound to travel from position 2 to obstacle =  $\frac{3-0.882}{2}$  = 1,059 s  $\checkmark$ 

Distance = 
$$v\Delta t = 340 \times 1,059$$
   
= 360 m (5)

### **OPTION 3:**

Distance covered= 300 + 2d√

$$v = \frac{D}{\Delta t} \quad \checkmark$$

$$340 = \frac{(300 + 2d)}{3} \checkmark$$

$$D = 360 \, m \, \checkmark$$



[14]

3.3.1 1 (cm)√ √ (2) 0,8(s) √ √ 3.3.2 (2) 3.3.3 pitch is <u>inversely proportional</u> to period √ therefore when the <u>pitch is halved</u> then the <u>period will double</u> ✓ (2) 3.4 20 000 − 100 000 Hz ✓ (1) [14] **QUESTION 4** 4.1.1 Ag ✓ (1)4.1.2 Solid √ (1) 4.1.3 O<sub>2</sub> ✓ (1) Water ✓ or dihydrogen oxide 4.1.4 (1) 4.1.5 (1) 4.1.6 | ✓ (1) 4.2.1  $3KBr + Fe(OH)_3 \rightarrow 3KOH + FeBr_3$  ✓ for reactants • ✓ for products (3)• ✓ for Balanced Equation 4.2.2 148 q√ (1) 4.2.3 REMAIN THE SAME ✓ (1) 4.2.4 According to the law of conservation of mass √ The total mass of the reactants must equal the total mass of the products.  $\checkmark\checkmark$ (3)

Copyright reserved Please turn over

### **QUESTION 5**

5.1. one mole of any substance√
contains 6,02 x 10<sup>23</sup> particles √
(2)

5.2 
$$\frac{\frac{m}{n} = \frac{N}{N_A}}{\frac{9}{8}} \checkmark$$

$$\frac{\frac{9}{8}}{98} = \frac{N}{6,02 \times 10^{23}} \checkmark$$

$$N = 6,02 \times 10^{22} \underline{molecules} \text{ of } H_2SO_4$$

$$= 4 \times 6,02 \times 10^{22} \text{atoms of oxygen } \checkmark$$

$$= 2,41 \times 10^{23} \text{ atoms} \checkmark$$

OR

$$n = \frac{m}{M}$$

$$= \frac{9.8}{98} \checkmark$$

$$\checkmark \text{ for BOTH } n = \frac{m}{M} \text{ and } n = \frac{m}{M}$$

$$= 0.1 \, mol$$

$$n = \frac{N}{N_A}$$

$$0.1 = \frac{N}{6.02 \times 10^{23}} \checkmark$$

$$N = 6.02 \times 10^{22} \, \underline{\text{molecules of }} H_2 S O_4$$

$$= 4 \times 6.02 \times 10^{22} \, \underline{\text{atoms of oxygen}} \checkmark$$

$$= 2.41 \times 10^{23} \, \underline{\text{atoms}} \checkmark$$
(5)

5.3.2 The law of constant composition 
$$\checkmark$$
 (1)

Copyright reserved Please turn over

$$c = \frac{m}{MV} \checkmark$$

$$0,22 = \frac{4,4}{40 \times V} \checkmark$$

$$V = 0.5 \, dm^3$$

OR

$$\checkmark$$
 for BOTH  $n = \frac{m}{M}$  and  $c = \frac{n}{V}$ 

$$n = \frac{n}{M}$$

$$= \frac{4,4}{40} \quad \checkmark$$

$$= 0,11 mol.$$

$$c = \frac{n}{V}$$

$$0.22 = \frac{0.11}{V}$$

$$V = 0.5dm^3$$



(4) **[15]** 

# **QUESTION 6**

6.1

The amount of water molecules which is present \( \sqrt{} \) one formula unit of salt \( \sqrt{} \)

(2)

6.2

$$For H_2O: n = \frac{m}{M}$$

$$= \frac{44,72}{18} \checkmark$$

$$= 2,48mol \cdot$$

$$for AlCl_3: n = \frac{55,28}{133,50} \checkmark$$

= 0.41 mol

 $Ratio of AlCl_3: H_2O$ 

$$=\frac{0,41}{0,41}:\frac{2,48}{0,41}$$

Therefore 
$$n_{H_2O} = 6$$

(5)

# 6.3 **POSITIVE MARKING FROM QUESTION 6.2**

$$\%H = \frac{6(1\times2)}{27 + (35,5\times3) + 6(18)} \times 100$$

$$=\frac{12}{241,50}$$
  $\times 100$ 

$$=4,97\%$$
  $\checkmark$ 

[10]

# **QUESTION 7**

7.1  $For Ca(OH)_2 : n = \frac{m}{M}$ 



=0,08*mol* ✓

 $NH_4$   $Cl:Ca(OH)_2$ 

= 2:1

Therefore  $n_{NH_{4}CL} = 0.16 \, \text{mol} \, \checkmark$  (3)

### 7.2 POSITIVE MARKING FROM 7.1

$$NH_4Cl: NH_3$$
  
= 2:2  
= 1:1

For 
$$NH_3: n \frac{V}{Vm}$$

$$0.16 = \frac{V}{22.4}$$

$$V = 3.58 \, dm^3 \checkmark$$
(4)

Copyright reserved

# 7.3 **POSITIVE MARKING FROM QUESTION 7.2**

$$\%$$
 yield =  $\frac{actual\ yield}{theoritical\ yield} \times 100 \checkmark$ 

$$=\frac{2,90}{3,58}\times100$$
  $\checkmark$ 



(3) **[10]** 

**TOTAL MARKS: 100**